Warm-ups with Long Division (no calculator!)

1.	2445 ÷ 3	2. 976 • 5 ⁻¹	3. $\frac{2089}{4}$
		2	8
		3 3	* 2

Use the same procedure with polynomials!

4. (4 <i>x</i> ³ – 9 <i>x</i>	$(2-10x-2)\div$		occuu o w			
	wet.	e toge w	"Kalara w	o Bear on en	, i.e. * 3.	9 to 484 (179)	·····································
2		1.					

Remainder Theorem: If a polynomial $f(x)$ is divided by $(x-k)$	Factor Theorem: A polynomial $f(x)$ has a factor $(x-k)$
then the remainder is $R = f(k)$.	if and only if $f(k) = 0$.
Verify the Remainder Theorem for #4:	Is (x-3) a factor of the polynomial in #4?

5.	$(-x^4 + 5x^3 -$	$-10x-4) \cdot (x+1)^{-1}$
----	------------------	----------------------------

6.
$$\frac{(4x^3-7x^2-11x+5)}{(4x+5)}$$

Is the divisor a factor?

Is the divisor a factor?

Evaluate the polynomial for x = -1

Evaluate the polynomial for $x = -\frac{5}{4}$

7.
$$(5x^4 + 2x^3 - 9x + 12) \div (x^2 - 3x + 4)$$

Is the divisor a factor?

Synthetic Division: used to divide a polynomial by a binomial divisor in the form (x-c) in which c is a constant and the coefficient of x is 1.

Root of Coefficients from Standard Form divisor * You will need a place-holder of the multiply coefficient "zero" for each missing term! 1. $(x^3-6x^2+2x-4)\div(x-2)$ 2. $(2x^3 + x^2 - 8x + 16) \cdot (x + 4)^{-1}$ Is the divisor a factor? Is the divisor a factor?

Is the divisor a factor?

Is the divisor a factor?

What if the coefficient of x is not 1?

$6. \left(x^2 - x + \right)$	+k $+(x-1)$	7. $(x^3 + 4x^2 + x + k) \div (x + 2)$
See at F	- 10 To 10 H	

