Honors Algebra 2
5.3 Polynomial Functions
5.4 Analyzing Graphs of Polynomial Functions

Polynomial Function: A monomial or a sum of monomials.
Written in the form: $f(x)=$
The exponents are whole numbers and the coefficients are real numbers.
Example: Polynomial or not? Explain:

$f(x)=3 x^{2}+2 x-10$	$f(x)=x^{\frac{1}{2}}-4 i x-10$	$f(x)=-2 x^{10}+\sqrt{\pi} x^{7}+4 x-1$

Degree: The \qquad exponent (\qquad) of the variable x .

* The degree indicates the number of \qquad for the polynomial (real \& imaginary)*

Leading Coefficient: The coefficient of the term with the \qquad exponent.

Example:

$$
f(x)=-x^{4}+3 x^{3}-x+1
$$

Degree: Leading Coefficient:
Total Number of Zeros:

End Behavior: the direction the graph goes as $x \rightarrow-\infty$ (x approaches negative infinity) and as $x \rightarrow+\infty$ (x approaches positive infinity)

	Odd Degree	Even Degree	
Positive Leading Coefficient	Example: $2 x^{3}$ $\begin{aligned} & x \rightarrow+\infty, f(x) \rightarrow \\ & x \rightarrow-\infty, f(x) \rightarrow \end{aligned}$	Example: $2 x^{2}$ $\begin{aligned} & x \rightarrow+\infty, f(x) \rightarrow \\ & x \rightarrow-\infty, f(x) \rightarrow \end{aligned}$	EXAMPLES: State End Behavior $\begin{aligned} & \text { 3] } f(x)=3 x^{4}+2 x^{2}-1 \\ & x \rightarrow+\infty, f(x) \rightarrow \\ & x \rightarrow-\infty, f(x) \rightarrow \end{aligned}$
Negative Leading Coefficient	Example: $-2 x^{3}$ $\begin{aligned} & x \rightarrow+\infty, f(x) \rightarrow \\ & x \rightarrow-\infty, f(x) \rightarrow \end{aligned}$	Example: $-2 x^{2}$ $\begin{aligned} & x \rightarrow+\infty, f(x) \rightarrow \\ & x \rightarrow-\infty, f(x) \rightarrow \end{aligned}$	$\begin{aligned} & \text { 4] } f(x)=-x^{5}+3 x^{4}-2 x^{3}-4 x-1 \\ & x \rightarrow+\infty, f(x) \rightarrow \\ & x \rightarrow-\infty, f(x) \rightarrow \end{aligned}$
	If the degree is ODD, then the tails go in opposite directions.	If the degree is EVEN, then the tails go in the same direction.	

Relative (Local) Maximum: The turning point of the function that is higher than all nearby points

Relative (Local) Minimum: The turning point of the function that is lower than all nearby points

List all relative extrema (maxima/minima) as ordered pairs
Real Zeros: Will also be the x-values of the x -intercepts

Real Zeros: Real zeros exist when the graph \qquad the x -axis.

Imaginary Zeros: Imaginary zeros exist when the graph \qquad touch the x -axis

Double Zeros: Occur when the graph \qquad the x -axis then turns away.

Polynomial of Least Degree: The smallest degree of a polynomial that will fit the given graph or zeros.

Example: State the types of zeros contained in the following polynomials of least degree.

A polynomial function is in Standard Form if its terms are written in descending order of
\qquad from left to right.

Example: Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, and leading coefficient.

1. $f(x)=x^{4}-\frac{1}{4} x^{7}+2$
2. $f(x)=7 x-\sqrt{3}+\pi x^{2}$
3. $f(x)=x^{3}-0.3 x^{-1}$
4. $f(x)=x+2^{x}$
5.3 Polynomial Functions
5.4 Analyzing Graphs of Polynomial Functions
