Polynomial Function: A monomial or a sum of monomials.

Written in the form: f(x) =

The exponents are whole numbers and the coefficients are real numbers.

Example: Polynomial or not? Explain:

 $f(x) = -2x^{10} + \sqrt{\pi} x^7 + 4x - 1$ $f(x)=x^{\frac{1}{2}}-4ix-10$ $f(x) = 3x^2 + 2x - 10$

Degree: The exponent () of the variable x.

* The degree indicates the number of ______ for the polynomial (real

& imaginary)*

Leading Coefficient: The coefficient of the term with the _____

exponent.

Example:

 $f(x) = -x^4 + 3x^3 - x + 1$

Degree:

Leading Coefficient: Total Number of Zeros:

End Behavior: the direction the graph goes as $x \rightarrow -\infty$ (x approaches negative infinity) and as $x \to +\infty$ (x approaches positive infinity)

	Odd Degree	Even Degree	
Positive Leading Coefficient	Example: $2x^3$ \bigwedge $x \rightarrow +\infty, f(x) \rightarrow \underline{\qquad}$ $x \rightarrow -\infty, f(x) \rightarrow \underline{\qquad}$	Example: $2x^2$ $x \rightarrow +\infty, f(x) \rightarrow \underline{\qquad}$ $x \rightarrow -\infty, f(x) \rightarrow \underline{\qquad}$	EXAMPLES: State End Behavior 3] $f(x) = 3x^4 + 2x^2 - 1$ $x \rightarrow +\infty, f(x) \rightarrow \underline{\qquad}$ $x \rightarrow -\infty, f(x) \rightarrow \underline{\qquad}$
Negative Leading Coefficient	Example: $-2x^3$ $x \rightarrow +\infty$, $f(x) \rightarrow $ $x \rightarrow -\infty$, $f(x) \rightarrow $	Example: $-2x^2$ $x \rightarrow +\infty, f(x) \rightarrow \underline{\qquad}$ $x \rightarrow -\infty, f(x) \rightarrow \underline{\qquad}$	4] $f(x) = -x^5 + 3x^4 - 2x^3 - 4x - 1$ $x \to +\infty, f(x) \to \underline{\qquad}$ $x \to -\infty, f(x) \to \underline{\qquad}$
<u></u>	If the degree is ODD, then the tails go in <u>opposite</u> directions.	If the degree is EVEN, then the tails go in the <u>same</u> direction.	

Honors Algebra 2 5.3 Polynomial Functions 5.4 Analyzing Graphs of Polynomial Functions

Relative (Local) Maximum: The turning point of the function that is higher than all nearby points

Relative (Local) Minimum: The turning point of the function that is lower than all nearby points

List all **relative extrema** (maxima/minima) as <u>ordered</u> <u>pairs</u>

Real Zeros: Will also be the x-values of the x-intercepts

1. Degree: Odd Even	2. Degree: Odd Even	
Leading Coeff. sign:	Leading Coeff. sign:	
Relative Maxima:	Relative Maxima:	
Relative Minima:	Relative Minima:	
Real zeros:	Real zeros:	
End Behavior:	End Behavior:	
Domain: Range:	Domain: Range:	
3. $f(x) = -x^3 + 2x^2 + 15x + 2$	4. $f(x) = 2x^4 - 3x^3 - 2x^2 + 7x + 1$	
Degree:	Degree:	
Leading Coefficient Value:	Leading Coefficient Value:	
Total Number of Zeros:	Total Number of Zeros:	
End Behavior:	End Behavior:	
Domain:	Domain:	

Honors Algebra 2 5.3 Polynomial Functions 5.4 Analyzing Graphs of Polynomial Functions

Real Zeros: Real zeros exist when the graph ______ the x-axis.

Imaginary Zeros: Imaginary zeros exist when the graph ______ touch the x-axis

Double Zeros: Occur when the graph ______ the x-axis then turns away.

Polynomial of Least Degree: The smallest degree of a polynomial that will fit the given graph or zeros.

Example: State the types of zeros contained in the following polynomials of least degree.

A polynomial function is in **Standard Form** if its terms are written in descending order of

_____ from left to right.

Example: Decide whether the function is a polynomial function. If so, write it in **standard form** and state its **degree**, and **leading coefficient**.

1.
$$f(x) = x^4 - \frac{1}{4}x^7 + 2$$
 3. $f(x) = 7x - \sqrt{3} + \pi x^2$

2.
$$f(x) = x^3 - 0.3x^{-1}$$

4. $f(x) = x + 2^x$

Honors Algebra 2 5.3 Polynomial Functions 5.4 Analyzing Graphs of Polynomial Functions