6.1 Operations on Functions Honors Algebra 2
1. Given f(x) = x² - 4 and g(x) = 2x + 1, find each function. Indicate any restrictions in the domain.

a.
$$(f + g)(x)$$
 c. $(f \cdot g)(x)$

b. (f-g)(x) d. $\left(\frac{f}{g}\right)(x)$

- 2. Given $f(x) = x^2 + 7x + 12$ and g(x) = 3x 4, find each function. Indicate any restrictions in the domain.
 - a. (f+g)(x) b. (f-g)(x)

6.1 Operations on Functions
Honors Algebra 2
c.
$$(f \cdot g)(x)$$

d. $\left(\frac{f}{g}\right)(x)$

d.
$$\left(\frac{f}{g}\right)(x)$$

Composition of Functions:

Suppose *f* and *g* are functions such that the range of *g* is a ______ of the domain of *f*. Then the composition function $f \circ g$ can be described by: $[f \circ g](x) = f[g(x)]$

3. For each pair of functions, find $[f \circ g](x)$ and $[g \circ f](x)$, if they exist. State the domain and range for each composed function.

a.
$$f = \{(1, 8), (0, 13), (15, 11), (14, 9)\}$$

 $g = \{(8, 15), (5, 1), (10, 14), (9, 0)\}$

b.
$$f = \{(3, -2), (-1, -5), (4, 7), (10, 8)\}$$

 $g = \{(4, 3), (2, -1), (9, 4), (3, 10)\}$

6.1 Operations on Functions Honors Algebra 2

c.
$$f(x) = 2a - 5$$
 and $g(x) = 4a$

d.
$$f(x) = x^2 + 2$$
 and $g(x) = x - 6$

e.
$$f(x) = -3x$$
 and $g(x) = -x + 8$

f.
$$f(x) = x - 4$$
 and $g(x) = x^2 - 10$

g.
$$f(x) = x^2 + 2x$$
 and $g(x) = 4x$

6.1 Operations on Functions Honors Algebra 2
4. If f(x) = 5x and g(x) =- 2x + 1, and h(x) = x² + 6x + 8, find each value:
a. g[h(3)]

b. *h*[*g*(2)]

c. f[h(a+4)]