1. Given $f(x)=x^{2}-4$ and $g(x)=2 x+1$, find each function. Indicate any restrictions in the domain.
a. $(f+g)(x)$
c. $(f \cdot g)(x)$
b. $(f-g)(x)$
d. $\left(\frac{f}{g}\right)(x)$
2. Given $f(x)=x^{2}+7 x+12$ and $g(x)=3 x-4$, find each function. Indicate any restrictions in the domain.
a. $(f+g)(x)$
b. $(f-g)(x)$
c. $(f \cdot g)(x)$
d. $\left(\frac{f}{g}\right)(x)$

Composition of Functions:

Suppose f and g are functions such that the range of g is a \qquad of the domain of f. Then the composition function $f \circ g$ can be described by: $[f \circ g](x)=f[g(x)]$
3. For each pair of functions, find $[f \circ g](x)$ and $[g \circ f](x)$, if they exist. State the domain and range for each composed function.
a. $f=\{(1,8),(0,13),(15,11),(14,9)\}$
$g=\{(8,15),(5,1),(10,14),(9,0)\}$
b. $f=\{(3,-2),(-1,-5),(4,7),(10,8)\}$
$g=\{(4,3),(2,-1),(9,4),(3,10)\}$
c. $f(x)=2 a-5$ and $g(x)=4 a$
d. $f(x)=x^{2}+2$ and $g(x)=x-6$
e. $f(x)=-3 x$ and $g(x)=-x+8$
f. $f(x)=x-4$ and $g(x)=x^{2}-10$
g. $f(x)=x^{2}+2 x$ and $g(x)=4 x$
4. If $f(x)=5 x$ and $g(x)=-2 x+1$, and $h(x)=x^{2}+6 x+8$, find each value:
a. $g[h(3)]$
b. $h[g(2)]$
c. $f[h(a+4)]$

