6.2 Inverse Functions and Relations Honors Algebra 2

Inverse Relation:

The domain of a relation becomes the ______ of its inverse, and the range

of the relation becomes the ______ of its inverse.

Free Concept Inverse Relations		
Words	Two relations are inverse relations if and only if whenever one relation contains the element (a, b) , the other relation contains the element (b, a) .	
Example	A and B are inverse relations	0000 B
	$A = \{(1, 5), (2, 6), (3, 7)\}$	$B = \{(5, 1), (6, 2), (7, 3)\}$

1. The vertices of \triangle ABC can be represented by the relation {(1, -2), (2, 5), (4, -1)}. Find the inverse of this relation. Describe the graph of the inverse.

2. The ordered pairs of the relation {(-8, -3), (-8, -6), (-3, -6)} are the coordinates of the vertices of a right triangle. Find the inverse of this relation. Describe the graph of the inverse.

Notation for an inverse:

When the inverse of a function is a function, the original function is ______.

The ______ can be used to determine whether the inverse of a function is also a function.

Determine whether the inverse of the functions below will also be inverses.
a.
b.

c. $f(x) = \sqrt{x+4}$ d. $f(x) = x^2 - 2$

The inverse of a function can be found by swapping the ______ and

4. Find the inverse of each function. Then graph the function and its inverse. a. y = x + 5b. $f(x) = x^2 + 1$

6.2 Inverse Functions and Relations Honors Algebra 2

c.
$$y = \frac{x-3}{4}$$
 d. $y = 3x^2$

You can determine if functions are inverses by finding both of their ______.

both	, then they are inverses.		
KeyConcept Inverse Functions			
Words	Two functions f and g are inverse functions if and only if both of their compositions are the identity function.		
Symbols	$f(x)$ and $g(x)$ are inverses if and only if $[f \circ g](x) = x$ and $[g \circ f](x) = x$.		

5. Verify that the two functions are inverses: a. f(x) = 3x + 9 and $g(x) = \frac{1}{3}x - 3$

6.2 Inverse Functions and Relations Honors Algebra 2

b. $f(x) = 4x^2$ and $g(x) = 2\sqrt{x}$

c.
$$f(x) = 3x - 3$$
 and $g(x) = \frac{1}{3}x + 4$

d.
$$f(x) = 2x^2 - 1$$
 and $g(x) = \sqrt{\frac{x+1}{2}}$