Inverse Relation: the set of ordered pairs obtained by exchanging the coordinates

The domain of a relation becomes the <u>range</u> of its inverse, and the range of the relation becomes the <u>domain</u> of its inverse.

∲ KeyCo	ncept Inverse Relations	a cusa i tubbleja. Vegako se minya uga	receasing the	note in y
Words Two relations are inverse relations if and only if whenever one relation conceins the element (b, a).				
Example	A and B are inverse relations.		# swap	x and
	$A = \{(1, 5), (2, 6), (3, 7)\}$	$B = \{(5, 1), (6, 2), (7, 3)\}$	7-50	B

1. The vertices of Δ ABC can be represented by the relation $\{(1, -2), (2, 5), (4, -1)\}$. Find the inverse of this relation. Describe the graph of the inverse.

2. The ordered pairs of the relation {(-8, -3), (-8, -6), (-3, -6)} are the coordinates of the vertices of a right triangle. Find the inverse of this relation. Describe the graph of the inverse.

Notation for an inverse:

f-1 (x) Adoesn't mean exponent -1 x

When the inverse of a function is a function, the original function is $\underline{\quad one \quad -b-one \quad}$.

The horizontal line test can be used to determine whether the inverse of a * use vertical line test to determine function is also a function. a function

3. Determine whether the inverse of the functions below will also be functions.

* restrict domain w/

ナー、(グ・1×

Not one-to-one

inverse not a function

one- to- one inverse is a function

one - to -one inverse is a fonction

d.
$$f(x) = x^2 - 2$$

Not one-to-one

inverse not a function

The inverse of a function can be found by swapping the ______ and _____ and

swap x and

4. Find the inverse of each function. Then graph the function and its inverse.

a.
$$y = x + 5$$

b.
$$f(x) = x^2 + 1$$

anot one-to-one

$$x = y^2 + 1$$

$$x - 1 = y^2$$

$$\pm\sqrt{x-1}=8$$

if x≥0 \$~ f(x) then 450 for file

6.2 Inverse Functions and Relations Honors Algebra 2

c.
$$y = \frac{x-3}{4}$$

 $x = \frac{y-3}{4}$
 $4x = y-3$
 $4x+3=y$
 $y^{-1} = 4x-3$

d.
$$y = 3x^2$$

$$x = 3y^2$$

$$\frac{1}{3}x = y^2$$

You can determine if functions are inverses by finding both of their _____ compositions

If both compositions equal \times then they are inverses. $f(y\omega) = \times$

KeyConcept Inverse Functions

Words Two functions f and g are inverse functions if and only if both of their compositions are the identity function.

Symbols f(x) and g(x) are inverses if and only if $[f \circ g](x) = x$ and $[g \circ f](x) = x$.

5. Verify that the two functions are inverses:

a.
$$f(x) = 3x + 9$$
 and $g(x) = \frac{1}{3}x - 3$

$$f(g(x)) = 3(\frac{1}{3}x - 3) + 9$$

$$= x - 9 + 9$$

$$= x + 3 - 3$$

$$= x$$

b.
$$f(x) = 4x^2$$
 and $g(x) = 2\sqrt{x}$

$$f(g(x)) = 4(2\sqrt{x})^2$$

$$= 4(4x)$$

$$= 16x$$

$$not inverses$$

c.
$$f(x) = 3x - 3$$
 and $g(x) = \frac{1}{3}x + 4$

$$f(g(x)) = 3(\frac{1}{3}x + 4) - 3$$

$$= x + 12 - 3$$

$$= x + 9$$
not increes

d.
$$f(x) = 2x^{2} - 1$$
 and $g(x) = \sqrt{\frac{x+1}{2}}$

$$f(g(x)) = 2(\sqrt{\frac{x+1}{2}})^{2} - 1$$

$$= 2(\frac{x+1}{2}) - 1$$

$$= \sqrt{x^{2}}$$

$$= x + 1 - 1$$

$$= \sqrt{x^{2}}$$

$$= x - 1$$

inverses