6.7 Solving Equations with nth Roots and Solving Radical Equations Honors Algebra 2

1. Solve the following equations:

a.
$$-2x^{6} = -1458$$
 729
 $x = 729$
 $x = \pm \sqrt{729}$
 $x = \pm \sqrt{3}$
 $x = \pm 3$

b.
$$x^3 - 9 = 31$$

c.
$$12 - (x+3)^3 = 84$$

$$-(x+3)^3 = 72$$

$$X = \frac{6}{100} \sqrt{729}$$

$$X = \sqrt[2]{40}$$

$$(x+3)^3 = -72$$

$$x = \sqrt{2} \sqrt{2}$$

$$x+3 = \sqrt[3]{-72}$$

$$x + 3 = \sqrt[3]{-1 \cdot 3^2 \cdot 2^3}$$

 $x + 3 = -2 \sqrt[3]{3^2}$

Radical Equation: an equation with radicals that have variables in their radicands. Solve within the set of REAL NUMBERS!

Case #1: The variable is not under the radical and is in two separate terms.

- → Move the terms with the variable to one side
- \rightarrow Factor out x
- → Divide by the Coefficient
- → Rationalize the denominator
- → Check Solutions

2.
$$x + 1 = x\sqrt{2}$$

$$\frac{1}{\sqrt{2}-1}=x$$

$$\sqrt{2} + 1 = X$$

3.
$$x\sqrt{3} = 3x + 5$$

$$\times(\sqrt{3}-3)=5$$

$$x = \frac{5}{\sqrt{3} - 3}$$

$$X = \frac{5(\sqrt{3} + 3)}{(\sqrt{3} - 3)(\sqrt{3} + 3)}$$

Case #2: One variable and is IN the radical

- → Isolate the term with the radical
- → Undo the radical operation INVERSE!
- → Solve for the variable
- → Check the solutions

4.
$$\sqrt{2b+2} - 3 = -15$$

$$\sqrt{2b+2} = -12$$

$$(\sqrt{2b+2})^2 = (-12)^2$$

$$2b+2 = 144$$

$$2b = 142$$

$$b = 71$$

check:

$$\begin{array}{r}
 \boxed{2(71) + 2} & -3 = -15 \\
 \hline
 \boxed{144} & -3 = -15 \\
 \boxed{12 - 3} = -15 \\
 \boxed{9} = -15
 \end{array}$$

extraneous solution

No solution

5.
$$(x-1)^{2/3} + 2 = 6$$

 $(x-1)^{2/3} = 4$
 $(x-1)^{2/3} = 4^{3/2}$
 $(x-1)^{2/3} = 4^{3/2}$
 $(x-1) = 4^{3/2}$
 $(x-1) = 4^{3/2}$
 $(x-1) = 2^{3/2}$
 $(x-1) = 2^{3/2}$
 $(x-1) = 2^{3/2}$
 $(x-1) = 8^{3/2}$

check:

$$8^{2/3} + 2 = 6$$

$$3\sqrt{8}^{2} + 2 = 6$$

$$2^{2} + 2 = 6$$

$$6 = 6$$

 $(9-1)^{2/3}+2=6$

$$X = 9$$

6.
$$x^4 + 81 = 0$$

 $x^4 = -8$
 $x = \pm \sqrt[4]{-8}$

neg -> not possible

No R solution

6.7 Solving Equations with nth Roots and Solving Radical Equations Honors Algebra 2

Case #3: The variable is IN TWO separate radicals

- → Separate the radical terms to opposite sides of the equation
- → Undo the radical operation (square both sides)
- → Isolate the remaining radical term
- → Undo the radical operation INVERSE!
- → Solve for the variable
- → Check Solutions

7.
$$\sqrt{x+1} - \sqrt{3x} = -1$$

$$\sqrt{x+1} = -1 + \sqrt{3}x$$

$$(\sqrt{x+1})^2 = (-1+\sqrt{3x})^2$$

$$X+1 = (-1+\sqrt{3x})(-1+\sqrt{3x})$$

$$X+1 = 1 - \sqrt{3}X - \sqrt{3}X + 3X$$

$$x+1 = 1 - 2\sqrt{3} \times +3x$$

$$-2x = -2\sqrt{3}x$$

$$X = \sqrt{3}X$$

$$x^2 = (\sqrt{3}x)^2$$

$$x^2 = 3x$$

$$x^2 - 3x = 0$$

$$\times (x-3) = 0$$

$$x = 10, 3$$
extraneous

8.
$$\sqrt{x+10} = 8 - \sqrt{x-6}$$

$$\left(\sqrt{x+16}\right)^2 = \left(8 - \sqrt{x-6}\right)^2$$

$$3^2 = \left(\sqrt{x-6}\right)^2$$

check :

and the same