7.3 Logarithms and Logarithmic Functions Honors Algebra 2

Logarithms

$$
\log _{b} y=x \text { if and only if } b^{x}=y
$$

1. Rewrite the following into

Logarithmic Form:
A. $\log _{2} 8=3$
B.
C. $\log _{12} 12=1$
D.
D. $\left(\frac{1}{4}\right)^{-1}=4$

Log Properties:

2. Evaluate:
a. $\log _{4} 64$
b. $\quad \log _{5} 0.2$

7.3 Logarithms and Logarithmic Functions Honors Algebra 2

c. $\quad \log _{1 / 5} 125$
d. $\log _{36} 6$

Common Log:

Natural Log:
3. Using a calculator find:
a. $\quad \log 12$
b. $\ln 3$

Inverse Functions:

Logarithms are inverses of exponential functions

$$
\begin{gathered}
f(x)=b^{x} \text { inverse of } g(x)=\log _{b} x \\
g(f(x))=\quad f(g(x))=
\end{gathered}
$$

4. Simplify:
a. $10^{\log 4}$
b. $\log _{5} 5^{x}$

KeyConcept Parent Function of Logarithmic Functions

Parent function: Domain: Asymptote:	Type of graph: all positive real numbers $f(x)$-axis	continuous, one-to-one Range: Intercept:	all real numbers $(1,0)$

5. Graph the following and state the domain and range:
a. $y=\log _{2} x$
b. $y=\log _{0.5} x+2$

7.3 Logarithms and Logarithmic Functions

Honors Algebra 2
c. $y=\log _{5}(x-1)$
d. $y=\log _{1 / 4}(x+2)-1$

