The term vector is used to represent a quantity that has both magnitude and direction. We denote a vector by:

The zero vector, denoted **0**, has length zero and is the only vector that does not have a specific direction.

A two dimensional vector has the form $\mathbf{a}=\langle a_1,a_2\rangle$ and a three dimensional vector has the form $\mathbf{a}=\langle a_1,a_2,a_3\rangle$, where a_1 , a_2 and a_3 are real numbers are called components of the vector.

Given the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$, the vector \mathbf{a} with representation \overrightarrow{AB} is $\mathbf{a} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$

How does this formula make sense? Let's look at:

P(1,1) and Q(8,5)

 \overrightarrow{PQ} we know would be $\langle 7,4 \rangle$ so $\langle 8-1,5-1 \rangle$

1. For the points, A(1,2,8) and B(4,7,2), find \overrightarrow{AB} and \overrightarrow{BA}

$$\overrightarrow{BA} = \langle 1-4, 2-7, 8-2 \rangle = \langle -3, -5, 6 \rangle$$

Let $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$, $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ and \mathbf{c} be a scalar, i.e. $\mathbf{c} \in \mathbb{R}$.

Scalar Multiplication: $c\mathbf{a} = c\langle a_1, a_2, a_3 \rangle = \langle ca_1, ca_2, ca_3 \rangle$

Length or Magnitude of a is $|a| = \sqrt{(a_1)^2 + (a_2)^2 + (a_3)^2}$

Vector Addition: ${\bf a} + {\bf b} = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$

Vector Subtraction: $\mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle$

Two vectors are parallel if one vector is a scalar multiple of the other. i.e. there exists $c \in \mathbb{R}$ such that $c\mathbf{a} = \mathbf{b}$

A vector of length 1 is called a unit vector. The vectors $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$, and $\mathbf{k} = \langle 0, 0, 1 \rangle$ are called the standard basis vectors for \mathbb{R}^3 .

To find a unit vector in the same direction as a, divide a by its magnitude. This process is called normalizing a. \Box

2. Find the following using the vectors $\mathbf{a}=\langle 1,2,4\rangle$ and $\mathbf{c}=\langle 2,-4,1\rangle$

a.
$$3a-2c$$
 $(3, 6, 12) - (4, -8, 2)$

b. Find a vector of length 3 in the opposite direction of a find we don't will we don't will we don't we don't

$$|\alpha| = \sqrt{1^2 + 2^2 + 4^2} = \sqrt{21}$$
 unit = $\frac{1}{\sqrt{21}} \langle 1, 2, 4 \rangle$

answer
$$\rightarrow \frac{-3}{\sqrt{21}} \langle 1, 2, 4 \rangle = \langle -3/\sqrt{21}, -6/\sqrt{21}, -12/\sqrt{21} \rangle$$

3. Consider points A = (0, -1, 3), B = (3, 1, 1), C = (2, 2, 2), and D = (3, 0, -1)

a. Compute the components of the vectors \overrightarrow{AB} and \overrightarrow{CD}

$$\overrightarrow{AB} = \langle 3-0, 1-(-1), 1-3 \rangle = \langle 3, 2, -2 \rangle$$

b. Compute $\overrightarrow{AB} - \overrightarrow{CD}$

c. Compute
$$\frac{1}{4}\overrightarrow{AB} + \overrightarrow{CD}$$
 $\frac{1}{4} \langle 3, 2, -2 \rangle + \langle 1, -2, -3 \rangle$ $\langle 3/4 + 1, | /2 - 2, | -/2 - 3 \rangle$ d. Compute $|\overrightarrow{AB}|$

$$|\overrightarrow{AB}| = \sqrt{3^2 + 2^2 + (-2)^2}$$

= $\sqrt{9+4+4} = \sqrt{17}$

4. Let $\overrightarrow{u} = 2i + j + k$ and $\overrightarrow{v} = i + 4j - k$. Find $\overrightarrow{w} = \overrightarrow{u} - \overrightarrow{v}$ and find the unit vector \overrightarrow{a} in the same direction as \overrightarrow{w}

$$\vec{\omega} = \langle 2-1, 1-4, 1-1 \rangle$$

$$= \langle 1, -3, 0 \rangle$$

$$\overrightarrow{A} = \sqrt{10} \left(1, -3, 0 \right)$$

$$= \left(\frac{1}{\sqrt{10}}, \frac{-3}{\sqrt{10}}, 0 \right)$$

$$\sqrt{1^2 + (-3)^2 + 0^2} = \sqrt{1+9}$$

$$= \sqrt{10}$$