Can you solve $x^{2}=-1$?

Complex Number

$$
i=\sqrt{-1}, \text { so } i^{2}=-1
$$

If a and b are real numbers, then any number of the form

$$
a+b i
$$

is a complex number. In the complex number $a+b i, a$ is the real part and b is the imaginary part

Two complex numbers $a+b i$ and $c+d i$ are equal provided that their real parts are equal and their imaginary parts are equal \rightarrow that is, they are equal if and only if $a=c$ and $b=d$.

Standard Form: $a+b i$

$$
\sqrt{-a}=i \sqrt{a}
$$

Caution:

First apply the definition $\sqrt{-a}=i \sqrt{a}$ before using any of the other rules for radicals.

1. Write each number as the product of a real number and i
a. $\sqrt{-16}$
b. $\sqrt{-70}$
2. Find each product or quotient. Simplify your answers.
a. $\sqrt{-17} \cdot \sqrt{-17}$
b. $\frac{\sqrt{-70}}{\sqrt{-7}}$
c. $\frac{\sqrt{-12} \cdot \sqrt{-6}}{\sqrt{8}}$
3. Write each number in standard form $a+b i$
a. $\frac{-9-\sqrt{-18}}{3}$
b. $\frac{20+\sqrt{ }=-8}{2}$
4. Find each sum or difference. Write answers in standard form.
a. $(4-i)+(8+5 i)$
b. $(-3+2 i)-(-4+2 i)$
5. Find each product. Write answers in standard form.
a. $(-2+3 i)(4-2 i)$
c. $(\sqrt{2}-4 i)(\sqrt{2}+4 i)$
b. $(2+i)^{2}$

For real numbers a and b,

$$
(a+b i)(a-b i)=a^{2}+b^{2}
$$

6. Find each quotient. Write answers in standard form.
a. $\frac{-5}{i}$
b. $\frac{-3+4 i}{2-i}$
c. $\frac{14+5 i}{3+2 i}$
7. Simplify each power of i
a. i^{29}
b. i^{40}
