Dot Product

The geometric definition of the dot product of two nonzero vectors a and b is the number:

$$\mathbf{a} \cdot \mathbf{b} = |a||b|\cos\theta$$

where θ is the angle between the vectors a and b, $0 \le \theta \le \pi$. If either a or b is 0, then $\mathbf{a} \cdot \mathbf{b} = \mathbf{0}$

The dot product of $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\langle a_1, a_2, a_3 \rangle$ is

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Two non-zero vectors a and b are orthogonal (perpendicular) if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

i.e. the angle between them is $\frac{\pi}{2}$

2 Properties of the Dot Product If a, b, and c are vectors in V_3 and c is a scalar, then

1.
$$a \cdot a = |a|^2$$

$$2. \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

3.
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

3.
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$
 4. $(c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$

$$\mathbf{5.}\ \mathbf{0}\cdot\mathbf{a}=0$$

1. Find the following using the vectors ${\bf a}=\langle -1,-2,-3\rangle,$ ${\bf b}=\langle -10,2,1\rangle,$ and $\mathbf{c} = \langle 2, 8, -6 \rangle$

$$a \cdot b = (-1)(-10) + (-2)(2) + (-3)(1)$$

= 10 - 4 - 3

c. Find the angle between a and b

$$\cos^{-1}\left(\frac{3}{\sqrt{14}\sqrt{15}}\right) = 0$$

 $\theta = 1.493 \text{ rad} = 85.51^{\circ}$

$$a \cdot c = (-1)(2) + (-2)(8) + (-3)(-4)$$

$$= -2 - 16 + 18$$

$$= 0$$

$$|b| = \sqrt{(-10)^2 + 2^2 + 1^2}$$

= $\sqrt{105}$

2. If $|{f a}|=1$ and $|{f b}|=2$, what is the maximum for ${f a}\cdot{f b}$? What does this say about the vectors?

Direction Cosines:

The direction cosines of vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ can be found using:

$$\cos \alpha = \frac{a_1}{|a|};$$
 $\cos \beta = \frac{a_2}{|a|};$ $\cos \gamma = \frac{a_3}{|a|}$

3. Find the direction angles for $\mathbf{a} = \langle 1, 0, 5 \rangle$

3. Find the direction angles for
$$\alpha = (1,0,0)$$
 $\cos \alpha = \frac{1}{\sqrt{2}G}$
 $\alpha = \cos^{-1}(\sqrt{2}G) = 78.7^{\circ}$
 $|\alpha| = \sqrt{1+0+25}$
 $\cos \beta = \sqrt{12}G$
 $\beta = 90^{\circ}$
 $\alpha = \sqrt{1+0+25}$
 $\alpha = \sqrt{1$

Projections

Scalar projection of
$$\mathbf{b}$$
 onto \mathbf{a} : $comp_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$

Vector projection of \mathbf{b} onto \mathbf{b} : $proj_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\mathbf{a}$

4. Find the vector and scalar projections of
$$\mathbf{m} = \langle 2, 1, 5 \rangle$$
 onto $\mathbf{n} \langle 1, 2, 3, \rangle$ $|n| = \sqrt{1+4+9}$

$$\operatorname{comp}_n \mathbf{m} = \frac{\mathbf{m} \cdot \mathbf{n}}{|n|} = \frac{(2)(1) + (1)(2) + (5)(3)}{\sqrt{14}} = \sqrt{14}$$

$$= \sqrt{14}$$

$$\operatorname{proj}_n \mathbf{m} = \frac{19}{\sqrt{14}} \langle 1, 2, 3 \rangle = \langle 19/4, 38/14, 57/14 \rangle$$

= 526