Equations of a Line (Point-Direction Form)

The line L through the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ in the direction of $\mathbf{v}=\langle a, b, c\rangle$ is described by

Vector Parametrization:

$$
\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle
$$

where $\mathbf{r}_{0}=\overrightarrow{0 P_{0}}$.

Parametric Equations:

$$
x=x_{0}+a t, \quad y=y_{0}+b t, \quad z=z_{0}+c t
$$

The parameter t takes on values $-\infty<t<\infty$

1. Find the vector equation and the parametric equations of a line through the point $(1,2,3)$ where the line is parallel to the vector $\mathbf{v}=\langle 2,5,10\rangle$.
2. Find the vector equation of the line through the points $(3,5,5)$ and $(2,1-5)$. Also give the parametric equations of this line. Where does the line intersect the xy-plane?
3. Is the point $(7,10,17)$ on the line $\mathbf{r}=\langle 1+3 t, 2+4 t, 3+7 t\rangle$?

> Plane is determined by a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and a vector $\mathbf{n}=\langle a, b, c\rangle$ that is orthogonal to the plane. The vector \mathbf{n} is called a normal vector.
> Vector Form:
> $\quad \mathbf{n} \cdot\langle x, y, z\rangle=d$
> Scalar Form:
> $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$
> $a x+b y+c z=d$

4. Find an equation of the plane through the point $(1,2,3)$ and is orthogonal to the vector $\langle 3,4,7\rangle$
5. Find an equation of the plane through the points $A(1,1,3), B(-1,3,2)$ and $C(1,-1,2)$.

Multivariable
 1.5 Equations of Lines and Planes

6. Find an equation of the plane through the point $(1,2,3)$ and contains the line $x=2+4 t, y=1+5 t, z=-1+3 t$.

Definition: Two planes are parallel if their normal vectors are parallel.
Definition: Two planes are perpendicular(orthogonal) if their normal vectors are perpendicular.
Definition: The angle between two non-parallel planes is the acute angle between the normal vectors.
7. Determine if there are pairs of planes (listed below) that are parallel, orthogonal, or neither?
$P_{1}: 4 x+2 y-8 x=15$
$P_{2}: 2 x+y-4 z=12$
$P_{3}: 3 x+2 y+2 z=10$

