Do I need to graph $f(x)=x^{2}-x-12$ to know when the function is below the x -axis (negative), or above the x-axis (positive)?

Solving a Quadratic Inequality
Step 1: Solve the corresponding quadratic equation
Step 2: Identify the intervals determined by the solutions of the equation
Step 3: Use a test value from each interval to determine which intervals form the solution set

1. Solve the following:
a. $x^{2}-x-12<0$
b. $2 x^{2}+5 x-12 \geq 0$
2. If a projectile is launched from ground level with an initial velocity of 96 ft per sec, its height s in feet t seconds after launching is given by the following equation, $s=-16 t^{2}+96 t$. When will the projectile be greater than 80 ft above ground level?

Solving a Rational Inequality

Step 1: Rewrite the inequality, if necessary, so that 0 is on one side and there is a single fraction on the other side.

Step 2: Determine the values that will cause either the numerator or the denominator to equal 0 .
*These are the values to consider on the number line
Step 3: Use a test value from each interval to determine which intervals form the solution set.

Caution:

- a value causing a denominator to equal zero is not in the solution
- A value causing the numerator to equal zero will be included in the solution if the inequality is "equal to"

3. Solve the following:
a. $\frac{2}{x-3} \geq 0$
b. $\quad \frac{5}{x+4} \geq 1$
c. $\quad \frac{2 x-1}{3 x+4}<5$
d. $\frac{5}{x+1}>\frac{12}{x+1}$
