Name

- If the infinite series S = ∑_{n=1}[∞] (-1)ⁿ⁺¹ 2/n, is approxiately by P_k = ∑_{n=1}^k (-1)ⁿ⁺¹ 2/n, what is the least value of k for which the alternating series error bound guarantees that |S P_k| < 3/100?
 A 64
 B 66
 C 68
 D 70
- 2. The Taylor series for a function *f* about x = 0 is given by $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n+1)!} x^{2n}$ and converges to *f* for all real numbers *x*. If the fourth-degree Taylor polynomial for *f* about x = 0 is used to approximate $f(\frac{1}{2})$ alternating series error bound?
- $A \frac{1}{2^4 \cdot 5!}$
- $B \frac{1}{2^5 \cdot c}$
- C $\frac{1}{2^6 \cdot 7!}$
- **D** $\frac{1}{2^{10} \cdot 11!}$
- 3. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ converges to *S*. Based on the alternating series error bound, what is the

least number of terms in the series that must be summed to guarantee a partial sum that is within 0.03 of *S* ?

4. The function *f* has derivatives of all orders for all real numbers, and $f^{(4)}(x)=e^{\sin x}$. If the third-degree Taylor polynomial for *f* about x=0 is used to approximate *f* on the interval [0,1], what is the Lagrange error bound for the maximum error bound for the maximum error on the interval [0,1]?

A	0.019
В	0.097
C	0.113
D	0.399
E	0.417

5. Let *f* be a function that has derivatives of all orders for all real numbers, and let $P_3(x)$ be the thirddegree Taylor polynomial for *f* about x = 0. The Taylor series for *f* about x = 0 converges at x = 1, and $|f^{(n)}(x)| \le \frac{n}{n+1}$ for, $1 \le n \le 4$ and all values of *x*. Of the following, which is the smallest value of *k* for which the Lagrange error bound guarantees that $|f(1) - P_3(1)| \le k$?

- (A) $\frac{4}{5}$ (B) $\frac{4}{5} \cdot \frac{1}{4!}$ (C) $\frac{4}{5} \cdot \frac{1}{3!}$ (D) $\frac{3}{4} \cdot \frac{1}{4!}$
- $E \frac{3}{4} \cdot \frac{1}{3!}$
- 6. If the series S = ∑_{n=1}[∞] (-1)ⁿ⁺¹ 1/n² is approximated by the partial sum S_k = ∑_{n=1}^k (-1)ⁿ⁺¹ 1/n², what is the least value of k for which the alternating series error bound guarantees that |S S_k| ≤ 9/10,000 ?
 (A) 31
 (B) 32
 (C) 33
 (D) 34
- 7. If the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2n+1}$ is approximated by the partial sum with 15 terms, what is the alternating series error bound?

- 8. The series $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$ converges to S and $0 < a_{k+1} < a_k$ for all k. If $S_n = \sum_{k=1}^n (-1)^{k+1} a_k$ is the *n*th partial sum of the series, which of the following statements must be true?

9. The Taylor series for a function f about x = 2 is given by $\sum_{n=0}^{\infty} (-1)^n \frac{3n+1}{2^n} (x-2)^n$ and converges to f for 0 < x < 4. If the third-degree Taylor polynomial for f about x = 2 is used to approximate $f\left(\frac{9}{4}\right)$, what is the alternating series error bound?

10.	$\max_{0 \leq x \leq 1.2} \left f^{(5)}(x) ight = 8.4$	$\max_{0 \leq x \leq 1.2} \left f^{(6)}(x) ight = 58.8$	$\max_{0 \leq x \leq 1.2} \left f^{(7)}(x) ight = 411.8$		
	Let $P(x)$ be the fifth-degree Taylor polynomial for a function f about $x = 0$. Information abo maximum of the absolute value of selected derivatives of f over the interval $0 \le x \le 1.2$ is gi				
	the table above. Of the following guarantees that $ f(1.2) $	owing, which is the smallest $ 2)-P(1.2) \leq k$?	t value of $m k$ for which the L	agrange er	
A	0.082				
В	0.174				
c	0.244				
D	0.293				

11. Let f be a polynomial function with nonzero coefficients such that $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$. $T_3(x)$ is the third-degree Taylor polynomial for f about x = c such that $T_3(x) = b_0 + b_1(x-c) + b_2(x-c)^2 + b_3(x-c)^3$. Based on use of the Lagrange error bound, $f(x) - T_3(x)$ must equal which of the following?

