Convergence for a:

Geometric Series:
Maclaurin series for $\sin x, \cos x, e^{x}$:

Nth-Term Test for Divergence

Recall from 10.1 infinite series:

The nth-term Test for Divergence

If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$ diverges. *The converse of this is not true. If $\lim _{n \rightarrow \infty} a_{n}=0$ the series could converge.

1. Determine if the series diverges:
a. $\sum_{n=0}^{\infty} 2^{n}$
b. $\sum_{n=1}^{\infty} \frac{n!}{2 n!+1}$
c. $\sum_{n=1}^{\infty} \frac{1}{n}$

BC Calculus

10.4 Radius of Convergence

Direct Comparison Test

The direct comparison test is a tool that we can use to determine convergence for complicated, positive series by comparing them with simpler series.

Direct Comparison Test

Let $0<a_{n}<b_{n}$ for all n

1. If $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges
2. If $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} b_{n}$ diverges.
3. Determine convergence or divergence.
a. $\sum_{n=1}^{\infty} \frac{1}{2+3^{n}}$
b. $\sum_{n=0}^{\infty} \frac{x^{2 n}}{(n!)^{2}}$
c. $\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!+2}$

Definitions of Absolute and Conditional Convergence

A series converges absolutely (is absolutely convergent) if $\sum\left|a_{n}\right|$ converges.
3. Does the series converge absolutely or diverge?
a. $\sum_{n=1}^{\infty} \frac{(-1)^{\frac{n^{2}+n}{2}}}{3^{n}}$
b. $\sum_{n=0}^{\infty} \frac{(\sin x)^{n}}{n!}$

Ratio Test

Ratio test

Let $\sum a_{n}$ be a series with nonzero terms.

1. $\sum a_{n}$ converges absolutely if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$
2. $\sum a_{n}$ diverges if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1$
3. The ratio test is inconclusive if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$

The ratio test is particularly useful for series that converge rapidly (i.e. factorials or exponentials).
4. Determine Convergence or Divergence:
a. $\sum_{n=0}^{\infty} \frac{2^{n}}{n!}$
b. $\sum_{n=0}^{\infty} \frac{n^{2} 2^{n+1}}{3^{n}}$

BC Calculus
10.4 Radius of Convergence
c. $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$
d. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}}{n+1}$
$\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ always converges at $x=a$, which assures us of one point where the series must converge.

The Convergence Theorem for Power Series

There are three possibilities for $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ with respect to convergence:

1. There is a positive number R such that the series diverges for $|x-a|>R$ but converges for $|x-a|<R$.
*The series may or may not converge at either of the endpoints $x=a-R$
and

$$
x=a+R
$$

2. The series converges for every $x(R=\infty)$
3. The series converges at $x=a$ and diverges elsewhere $(R=0)$
*We find the radius of convergence by using the Ratio Test

Radius of Convergence for a power series tells you how far away from the center you can be and still find a good approximation
5. Find the Radius and Interval of Convergence for:
a. $\sum_{n=0}^{\infty} n!x^{n}$
b. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$

BC Calculus
10.4 Radius of Convergence
C. $\quad \sum_{n=0}^{\infty} \frac{(-1)^{n+1}(x-2)^{n}}{n 2^{n}}$
d. $\sum_{n=0}^{\infty} \frac{(x-3)^{n+1}}{(n+1) 4^{n+1}}$

