Integral Test

Use the integral Test to determine whether an infinite series converges or diverges

The Integral Test If *f* is positive, continuous, and decreasing for $x \ge 1$ and $a_n = f(n)$, then $\sum_{n=1}^{\infty} a_n$ and $\int_{1}^{\infty} f(x) dx$ either both converge or both diverge.

1. Use the integral test to determine convergence or divergence of each series.

a.
$$\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$$
 b. $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$ c. $\sum_{n=2}^{\infty} \frac{1}{n \ln(n)}$

P-Series Test

Definition of a p-Series

A p-series is a type of series that follows the following pattern:

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots$$

where p is a positive constant. For p = 1, the series $\sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots$ is called the

harmonic series.

Convergence of p-Series

The p-series $\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots$ 1. Converges if p > 1

- 2. Diverges if 0
- 2. Determine if the series are convergent or divergent:

a.
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 b. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ c. $\sum_{n=1}^{\infty} \frac{1}{n}$

Limit Comparison Test

Some series closely resemble others but you are unable to apply the Direct Comparison Test. If this is the case, there is a second comparison test called the Limit Comparison Test.

 $\sum_{n=0}^{\infty} \frac{1}{2+\sqrt{n}}$ is a good example where direct comparison will not work but limit comparison

will.

Limit Comparison Test Suppose that $a_n > 0$, $b_n > 0$ and

$$\lim_{n\to\infty}\left(\frac{a_n}{b_n}\right)=L$$

where L is finite and positive. Then the two series $\sum a_n$ and $\sum b_n$ either both converge or

both diverge.

*For L to be finite and positive it means L cannot be ______ or _____

3. Choosing what to compare:

a.
$$\sum_{n=1}^{\infty} \frac{1}{3n^2 - 4n + 5}$$
 b. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{3n - 2}}$ c. $\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{3n - 2}}$

4. Determine the convergence or divergence of the following series:

a.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$$

BC Calculus 10.5 Testing Convergence at Endpoints

b.
$$\sum_{n=1}^{\infty} \frac{n2^n}{4n^3+1}$$

$$c. \quad \sum_{n=2}^{\infty} \frac{1}{\sqrt[3]{n^2-2}}$$

Alternating Series Test

Most of the tests that we've used so far have dealt with only positive terms (geometric test withstanding).

Recall:

A series whose terms switch between positive and negative is called an **alternating series**

Alternating Series Test Let $a_n > 0$. The alternating series: $\sum_{n=1}^{\infty} (-1)^n a_n$ and $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ will converge if the following two conditions are met 1. $\lim_{n \to \infty} a_n = 0$ 2. $a_{n+1} \le a_n$ for all n

*If the test fails the first condition, then the series diverges by the nth term test!

5. Use the alternating series test to determine convergence or divergence

a.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$$

b.
$$\sum_{n=1}^{\infty} \frac{n}{(-2)^{n-1}}$$

c.
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \cos(\pi x)$$

d.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+1)}{n}$$

Conditional Convergence

A series converges conditionally if $\sum a_n$ converges but $\sum |a_n|$ diverges.

A conditionally convergent series converges only on the condition that it alternates (classic example: harmonic series) whereas absolutely convergent series will converge whether it alternates or not.

6. Does the series converge absolutely, converge conditionally, or diverge?

a.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n^2}}$$

7. Find the interval of convergence for:

a.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1}$$
 b. $\sum_{n=1}^{\infty} \frac{(-1)^{n+2} (x-2)^n}{n}$

BC Calculus 10.5 Testing Convergence at Endpoints

$$C. \quad \sum_{n=0}^{\infty} x^n$$

Finding the Right Test

BC Calculus 10.5 Testing Convergence at Endpoints

		Convergence	divergence	
nth-Term Test for Divergence	$\sum_{n=1}^{\infty} a_n$		$\lim_{n\to\infty}a_n\neq 0$	This test cannot be used to show convergence!
Geometric Series	$\sum_{n=0}^{\infty} ar^n$	r < 1	$ r \ge 1$	$Sum = \frac{a}{1-r}$; sum must start at zero
P-Series	$\sum_{n=0}^{\infty} \frac{1}{n^p}$	<i>p</i> > 1	0	
Integral Test	$\sum_{n=1}^{\infty} a_n$	$\int_{1}^{\infty} f(x) dx \text{ converges}$	$\int_{1}^{\infty} f(x) dx \text{ diverges}$	<i>f</i> is continuous, positive, and decreasing
Direct Comparison Test	$\sum_{n=1}^{\infty} a_n$	$0 < a_n \le b_n$ and $\sum_{n=1}^{\infty} b_n$ converges	$0 < b_n \le a_n$ and $\sum_{n=1}^{\infty} b_n$ diverges	
Limit Comparison Test	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L \text{ and}$ $\sum_{n=1}^{\infty} b_n \text{ converges}$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L \text{ and}$ $\sum_{n=1}^{\infty} b_n \text{ diverges}$	L must be positive and finite (not zero, not infinity)
Alternating Series Test	$\sum_{n=1}^{\infty} (-1)^n a_n$	1. $\lim_{n \to \infty} a_n = 0$ 2. $a_{n+1} < a_n$		Remainder: $ R_n \le a_{n+1}$
Ratio Test	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty}\left \frac{a_{n+1}}{a_n}\right <1$	$\lim_{n\to\infty}\left \frac{a_{n+1}}{a_n}\right >1$	Inconclusive if: $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1$