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10.5 Testing Convergence at Endpoints 

Integral Test 
 
Use the integral Test to determine whether an infinite series converges or diverges 
 

The Integral Test 
If  is positive, continuous, and decreasing for  and , thenf x ≥ 1 (n)an = f   

   and     ∑
∞

n=1
an (x)dx ∫

∞

1
f  

either both converge or both diverge. 

 
1. Use the integral test to determine convergence or divergence of each series. 

a. ∑
∞

n=1

n
n +12  b. ∑

∞

n=1

1
n +12  c. ∑

∞

n=2

1
n (n)ln  
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P-Series Test 
 

Definition of a p-Series 
A p-series is a type of series that follows the following pattern: 

...∑
∞

n=1

1
np = 1

1p + 1
2p + 1

3p + .  

where p is a positive constant.  For  the series  is called the,p = 1 ...∑
∞

n=1
n
1 = 1

1 + 2
1 + 3

1 + .  

harmonic series. 

Convergence of p-Series 

The p-series ..∑
∞

n=1

1
np = 1

1p + 1
2p + 1

3p + .  

1. Converges if p > 1  
2. Diverges if 0 < p ≤ 1  

 
2. Determine if the series are convergent or divergent: 

a. ∑
∞

n=1

1
n2  b. ∑

∞

n=1

1
√n  c. ∑

∞

n=1
n
1  
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Limit Comparison Test 
Some series closely resemble others but you are unable to apply the Direct Comparison 
Test.  If this is the case, there is a second comparison test called the Limit Comparison Test. 
 

 is a good example where direct comparison will not work but limit comparison∑
∞

n=0

1
2+√n  

will. 

Limit Comparison Test 
Suppose that  and, ban > 0  n > 0   

 lim
n→∞ ( bn

an) = L  

where L is finite and positive.  Then the two series  and  either both converge or∑
 

 
an ∑

 

 
bn  

both diverge.  
         *For L to be finite and positive it means L cannot be ___________ or _______________ 

 
3. Choosing what to compare: 

a. ∑
∞

n=1

1
3n −4n+52  b. ∑

∞

n=1

1
√3n−2

 c. ∑
∞

n=1

n2

√3n−2
 

 
 
 
 

4. Determine the convergence or divergence of the following series: 

a. ∑
∞

n=1

√n
n +12  
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b. ∑
∞

n=1

n2n
4n +13  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c. ∑
∞

n=2

1
√3 n −22

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

BC Calculus 
10.5 Testing Convergence at Endpoints 

Alternating Series Test 
Most of the tests that we’ve used so far have dealt with only positive terms (geometric test 
withstanding).  
 
Recall:  
A series whose terms switch between positive and negative is called an ​alternating series 
 

Alternating Series Test 
Let .  The alternating series:an > 0  

 and (− ) a∑
∞

n=1
1 n

n (− ) a∑
∞

n=1
1 n+1

n  

will converge if the following two conditions are met 
 

1. lim
n→∞

an = 0  

2.  for all an+1 ≤ an n  
 
*If the test fails the first condition, then the series diverges by the nth term test! 

 
5. Use the alternating series test to determine convergence or divergence 

a. (− )∑
∞

n=1
1 n+1

n
1  

 
 
 
 
 
 
 
 

b. ∑
∞

n=1

n
(−2)n−1  

 
 
 
 
 
 

c. (πx)∑
∞

n=1

1
n2 cos  
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d. ∑
∞

n=1
n

(−1) (n+1)n+1

 

 
 
 
 
 
 
 
 
 
 

Conditional Convergence 

A series converges conditionally if  converges but  diverges.∑
 

 
an a |∑

 

 
| n  

 
A conditionally convergent series converges only on the condition that it alternates 
(classic example: harmonic series) whereas absolutely convergent series will converge 
whether it alternates or not.  

 
6. Does the series converge absolutely, converge conditionally, or diverge? 

a. ∑
∞

n=1 √3 n2

(−1)n  

 
 
 
 

7. Find the interval of convergence for: 

a. ∑
∞

n=0
n+1

(−1) xn n+1
 b. ∑

∞

n=1
n

(−1) (x−2)n+2 n
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c. ∑
∞

n=0
xn  

 
 
 
 
 
 
 
 
 
 
 
 
 
Finding the Right Test 
 

Test Series Condition(s) of Condition(s) of Comment 
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Convergence divergence 

nth-Term Test 
for Divergence 

∑
∞

n=1
an   =lim

n→∞
an / 0  

This test cannot 
be used to show 
convergence! 

Geometric 
Series 

r∑
∞

n=0
a n  r|| < 1  r|| ≥ 1  

Sum ; sum= a
1−r  

must start at 
zero 

P-Series ∑
∞

n=0

1
np  p > 1  0 < p ≤ 1   

Integral Test ∑
∞

n=1
an   converges(x)dx∫

∞

1
f   diverges(x)dx∫

∞

1
f  

 is continuous,f  
positive, and 
decreasing 

Direct 
Comparison 
Test 

∑
∞

n=1
an  

 and0 < an ≤ bn  

 converges∑
∞

n=1
bn  

 and0 < bn ≤ an  

 diverges∑
∞

n=1
bn   

Limit 
Comparison 
Test 

∑
∞

n=1
an  

 andlim
n→∞ bn

an = L  

 converges∑
∞

n=1
bn  

 andlim
n→∞ bn

an = L  

 diverges∑
∞

n=1
bn  

L must be 
positive and 
finite (not zero, 
not infinity) 

Alternating 
Series Test 

(− ) a∑
∞

n=1
1 n

n  
1. lim

n→∞
an = 0  

2. an+1 < an  
 Remainder: 

R || n ≤ an+1  

Ratio Test ∑
∞

n=1
an  lim

n→∞
|
| an
an+1 |

| < 1  lim
n→∞

|
| an
an+1 |

| > 1  
Inconclusive if: 
 
lim
n→∞

|
| an
an+1 |

| = 1  

 


