11.1 Parametric Functions

BC Calculus

Parametric Function:

Instead of defining the points (x, y) on a planar curve by relating y directly to x, we can define both coordinates as functions of a parameter t.

1. Make a table of values and sketch the curve, indicating the direction of your graph. Then, eliminate the parameter.
a. $\quad x=\sqrt{t-1}, y=t+2$

b. $x=t^{2}-3$ and $y=2 t,-2 \leq t \leq 3$
c. $x=3+2 \cos t, y=-1+3 \sin t$

Slope and Concavity
For parametric function the slope of the curve is stil $\frac{d y}{d x}$, and the concavity still depends on $\frac{d^{2} y}{d x^{2}}$, so all that is needed is a way of differentiating with respect to x when everything is given in terms of t.

Parametric Differentiation Formulas

If x and y are both differentiable functions of t and if $\frac{d y}{d x} \neq 0$, then

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t},
$$

If $y^{\prime}=\frac{d y}{d x}$ is also differentiable functions of t, then

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left[\frac{d y}{d x}\right]=\frac{d}{d t}\left[\frac{d y}{d x}\right]\left(\frac{d t}{d x}\right)=\frac{\frac{d}{d t}\left[\frac{d y}{d x}\right]}{\frac{d x}{d t}}
$$

2. Given the parametric functions $x=2 \sqrt{t}$ and $y=3 t^{2}-2 t$, find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$
3. Given the parametric equations $x=4 \cos t$ and $y=3 \sin t$, write an equation of the tangent line to the curve at the point where $t=\frac{3 \pi}{4}$
4. Find the equation of the line tangent to the curve given by $x=2-3 \cos \theta$ and $y=3+2 \sin \theta$ at the point $(-1,3)$.
5. Find all points of of horizontal and vertical tangency given the parametric equations $x=t^{2}+t, y=t^{2}-3 t+5$
6. Consider the curve defined parametrically by $x=t^{2}-5$ and $y=2 \sin t$ for $0 \leq t \leq \pi$.
a. Sketch a graph of the curve in the viewing window $[-7,7]$ by $[-4,4]$. Indicate the direction in which it is traced.
b. Find the highest point on the curve.
c. Find all points of inflection on the curve.

Arc Length of a Parametric Curve

Let L by the length of a parametric curve that is traverse exactly once as t increases from t_{1} to t_{2}.
If $\frac{d x}{d t}$ and $\frac{d y}{d t}$ are continuous function of t, then

$$
L=\int_{t_{1}}^{t_{2}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

6. A particle moves along the smooth curve given by $x=t^{2}+1$ and $y=4 t^{3}-1$. How far did the particle travel between $t=0$ and $t=5$?
