Parametric Function:

Instead of defining the points (x, y) on a planar curve by relating y directly to x, we can define both coordinates as functions of a parameter t.

- 1. Make a table of values and sketch the curve, indicating the direction of your graph. Then, eliminate the parameter.
 - a. $x = \sqrt{t-1}, y = t+2$

b. $x = t^2 - 3$ and $y = 2t, -2 \le t \le 3$

c. $x = 3 + 2\cos t$, $y = -1 + 3\sin t$

Slope and Concavity

For parametric function the slope of the curve is stil $\frac{dy}{dx}$, and the concavity still depends on $\frac{d^2y}{dx^2}$, so all that is needed is a way of differentiating with respect to x when everything is given in terms of t.

Parametric Differentiation Formulas

If *x* and *y* are both differentiable functions of *t* and if $\frac{dy}{dx} \neq 0$, then $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$,

If $y' = \frac{dy}{dx}$ is also differentiable functions of t, then $\frac{d^2y}{dx^2} = \frac{d}{dx} \left[\frac{dy}{dx} \right] = \frac{d}{dt} \left[\frac{dy}{dx} \right] \left(\frac{dt}{dx} \right) = \frac{\frac{d}{dt} \left[\frac{dy}{dx} \right]}{\frac{dt}{dt}}$

2. Given the parametric functions $x = 2\sqrt{t}$ and $y = 3t^2 - 2t$, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$

3. Given the parametric equations $x = 4 \cos t$ and $y = 3 \sin t$, write an equation of the tangent line to the curve at the point where $t = \frac{3\pi}{4}$

4. Find the equation of the line tangent to the curve given by $x = 2 - 3\cos\theta$ and $y = 3 + 2\sin\theta$ at the point (-1, 3).

5. Find all points of of horizontal and vertical tangency given the parametric equations $x = t^2 + t$, $y = t^2 - 3t + 5$

- 6. Consider the curve defined parametrically by $x = t^2 5$ and $y = 2 \sin t$ for $0 \le t \le \pi$.
 - a. Sketch a graph of the curve in the viewing window [-7,7] by [-4,4]. Indicate the direction in which it is traced.
 - b. Find the highest point on the curve.
 - c. Find all points of inflection on the curve.

Arc Length of a Parametric Curve

Let *L* by the length of a parametric curve that is traverse exactly once as *t* increases from t_1 to t_2 . If $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are continuous function of t, then

$$L = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

6. A particle moves along the smooth curve given by $x = t^2 + 1$ and $y = 4t^3 - 1$. How far did the particle travel between t = 0 and t = 5?