Velocity, Speed, Acceleration, and Direction of Motion

Suppose a particle moves along a smooth curve in the plane so that its position at any time t is $(x(t), y(t))$, where x and y are differentiable functions of t.

1. The particle's position vector is $r(t)=\langle x(t), y(t)\rangle$
2. The particle's velocity vector is $v(t)=\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle$
3. The particle's speed is the magnitude of \mathbf{v}, denoted $|v|$. Speed is a scalar not a vector.
4. The particle's acceleration vector is $a(t)=\left\langle\frac{d^{2} x}{d t^{2}}, \frac{d^{2} y}{d t^{2}}\right\rangle$
5. A particle moves in the xy-plane so that at any time t, the position of the particle is given by $x(t)=t^{3}+4 t^{2}, y(t)=t^{4}-t^{3}$.
a. Find the velocity vector when $t=1$
b. Find the acceleration vector when $t=2$
6. A particle moves in the xy-plane so that at any time $t, t \geq 0$, the position of the particle is given by $x(t)=t^{2}+3 t, y(t)=t^{3}-3 t^{2}$. Find the magnitude of the velocity vector when $t=1$.
7. A particle moves in the xy-plane so that $x=\sqrt{3}-4 \cos t$ and $y=1-2 \sin t$, where $0 \leq t \leq 2 \pi$. The path of the particle intersects the x-axis twice. Write an expression that represents the distance traveled by the particle between the two x-intercepts.
8. A particle moves in the xy-plane so that at any time t, the position of the particle is given by $x(t)=2 t^{3}-15 t^{2}+36 t+5, y(t)=t^{3}-3 t^{2}+1$, where $t \geq 0$. For what value(s) of t is the particle at rest?
9. A particle moves in the xy-plane in such a way that its velocity vector is $\left\langle 3 t^{2}-4 t, 8 t^{3}+5\right\rangle$. If the position vector at $t=0$ is $\langle 7,-4\rangle$, find the position of the particle at $t=1$.
10. An object moving along a curve in the xy-plane has position $\langle x(t), y(t)\rangle$ at time t with $\frac{d x}{d t}=\sin \left(t^{3}\right)$ and $\frac{d y}{d t}=\cos \left(t^{2}\right)$. At time $t=2$, the object is at position $(1,4)$.
a. Find the acceleration vector for the particle at $t=2$.
b. Write the equation of the tangent line to the curve at the point where $t=2$.
c. Find the speed of the vector at $t=2$.
d. Find the position of the particle at time $t=1$
