Want to use numerical integration to find areas enclosed by polar curves. It is not reasonable to convert all polar functions into rectangular equations. So we need to have a formula involving small changes in $\theta$ rather than $x$.

A small change $\Delta x$ produces a thin rectangular strip of area
A small change $\Delta \theta$ produces a thing circular sector of area


$$
\begin{aligned}
& \text { Area of a sector: } \frac{1}{2} r^{2} \theta \\
& \text { Area of highlighted sector: } \frac{1}{2} f(\theta)^{2} \Delta \theta \\
& \text { Calculate entire enclosed area: } \frac{1}{2} \int_{\theta_{1}}^{\theta_{2}} f(\theta)^{2} d \theta
\end{aligned}
$$

## Area in Polar Coordinates

The area of the region between the original and the curve $r=f(\theta)$ for $\alpha \leq \theta \leq \beta$ is:

$$
A=\int_{\alpha}^{\beta} \frac{1}{2} f(\theta)^{2} d \theta
$$

1. Find the area bounded by the graph of $r=2+2 \sin \theta$

2. Find the area of one petal of $r=2 \sin 3 \theta$

3. Find the area of one petal of $r=4 \cos 2 \theta$

4. Find the area of the inner loop of the graph of $r=1+2 \sin \theta$

5. Find the area of the graph $r=1+2 \sin \theta$

6. Find the area between the two loops for the graph of $r=1+2 \sin \theta$

7. Find the area inside of $r=3 \sin \theta$ and outside $r=2-\sin \theta$


### 11.3 Polar Functions

BC Calculus
8. Find the area of the common interior of $r=3 \cos \theta$ and $r=1+\cos \theta$


