

The surface area S of a (Theorem 12.11)	There with radius r is $S=4 \pi r^{2}$

1. Find the surface area of the spheres below:
a.

b.

c.

When a plane intersects a sphere the intersection is:
1.
2.

If the intersection is contains the center of the sphere the intersection is a \qquad

2. The circumference of a great circle of the sphere below is 13.8π feet. What is the surface area of the sphere?

	The volume V of a sphere with a radius r is Volume of a Sphere (Theorem 12.12)
$V=\frac{4}{3} \pi r^{3}$	

3. Find the volume of each sphere or hemisphere below:
a.

b.

c.

4. A sphere with a great circle circumference is $18 \pi \mathrm{~cm}$. Find the volume of the sphere.

5. Find the volume of the hemisphere given that the diameter is 16 cm .
6. Find the volume of the sphere given that the area of the great circle is $55 \pi \mathrm{in}^{2}$.
