Cylindrical Coordinates (r, θ, z)

(.,.,_)		
-	Cylindrical to Rectangular	Rectangular to Cylindrical
C 1		
13		
-		
-		ĺ
- A		

1. Find the rectangular coordinates of the point P with cylindrical coordinates $(r, \theta, z) = (2, \frac{3\pi}{4}, 5)$

2. Find cylindrical coordinates for the point with rectangular coordinates $(x, y, z) = (-3\sqrt{3}, -3, 5)$

Level Surfaces: are the surfaces obtained by setting one of the coordinates equal to a constant

In rectangular coordinates:

In cylindrical coordinates:

3. Find an equation of the form $z = f(r, \theta)$ for the surfaces: a. $x^2 + y^2 + z^2 = 9$, with $z \ge 0$

b. x + y + z = 1

4. Graph the surface corresponding to the equation in cylindrical coordinates given by $z = r^2$

Spherical Coordinates (p, θ, ϕ)

can define a point P using two angles $\rightarrow \theta$ and φ

 θ defines the angle on the xy-plane

 φ defines the angle of declination \rightarrow the angle between the z-axis $% \varphi$ and the ray through point P

 $y = r \sin \theta =$

5. Find the rectangular coordinates of $P = (p, \theta, \phi) = (3, \frac{\pi}{3}, \frac{\pi}{4})$, and find the radial coordinate *r* of its projection *Q* onto the *xy* –plane.

6. Find the spherical coordinates of the point $P = (x, y, z) = (2, -2\sqrt{3}, 3)$

7. Find an equation of the form $p = f(\theta, \phi)$ for the following surfaces: a. $x^2 + y^2 + z^2 = 9$

b.
$$z = x^2 - y^2$$

8. Graph $p = \sec \theta$