Cylindrical Coordinates (r, θ, z)

1. Find the rectangular coordinates of the point P with cylindrical coordinates $(r, \theta, z)=\left(2, \frac{3 \pi}{4}, 5\right)$
2. Find cylindrical coordinates for the point with rectangular coordinates

$$
(x, y, z)=(-3 \sqrt{3},-3,5)
$$

Level Surfaces: are the surfaces obtained by setting one of the coordinates equal to a constant

In rectangular coordinates:
In cylindrical coordinates:

3. Find an equation of the form $z=f(r, \theta)$ for the surfaces:
a. $x^{2}+y^{2}+z^{2}=9$, with $z \geq 0$
b. $x+y+z=1$
4. Graph the surface corresponding to the equation in cylindrical coordinates given by $z=r^{2}$

Spherical Coordinates (p, θ, ϕ)
can define a point P using two angles $\rightarrow \theta$ and ϕ
θ defines the angle on the xy-plane
ϕ defines the angle of declination \rightarrow the angle between the z-axis and the ray through point P

Restrict $p \geq 0$ and $0 \leq \phi \leq \pi$

Spherical to Rectangular	Rectangular to Spherical
	$p=$
	$\tan \theta=$
	$\cos \phi=$

Find $r=$
therefore:

$$
y=r \sin \theta=
$$

$$
z=
$$

5. Find the rectangular coordinates of $P=(p, \theta, \phi)=\left(3, \frac{\pi}{3}, \frac{\pi}{4}\right)$, and find the radial coordinate r of its projection Q onto the $x y$-plane.
6. Find the spherical coordinates of the point $P=(x, y, z)=(2,-2 \sqrt{3}, 3)$
7. Find an equation of the form $p=f(\theta, \phi)$ for the following surfaces:
a. $x^{2}+y^{2}+z^{2}=9$
b. $z=x^{2}-y^{2}$
8. Graph $p=\sec \theta$
