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Vector Functions and Space Curves

Let r be a vector function whose domain is a set of real numbers and result is a three-dimensional
vector. Let

r(t) = (£(2),9(8), h(t)) = f(t)i+ g(t)j + h(t)k
where f(t), g(t), and h(t) are real valued functions and are called the component functions of r.

The limit of a vector function r is defined by taking the limits of its component functions:

- tim o(t) = (Jim £(8),lim(t), lim () )

A vector function r is continuous if and only if its component functions f(t), g(t), and h(t) are con-
tinuous.
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Example: Given r(t) = <t\/t +5, 242, CT>

a) Find the domain of r(¢).
titts = t2 -5
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b) Find all ¢ where r(t) is continuous. ..
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c¢) Compute %1_1)1(1) r(t).
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Definition: Suppose that f(t), g(t), and h(t) are real valued functions on an interval I, then the set
C defined as :

C ={(z,y,2)lz = f(t),y = g(t), z = h(t)}

where ¢ is a parameter and ¢ varies in some interval, I, is called a space curve. The space curve C
can be traversed by the vector function r(t) = (f(¢), g(t), h(t)).
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Example: Describe the curve defined by the vector function. Indicate the direction of motion.
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(b) r(t) = (t,t2, c), where c is a constant.
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(d) r(t) = (2+t,2+3t,4-—2t), 0<t<1
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Example: Show that the curve r(t) = <sin(t), 2cos(t), \/§sin(t)> lies on both a plane and a sphere.
What does the space curve for r(t) look like?

A=SINE y=2cest 2= [3 aint sphere
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Example: Find a vector function that represents the curve of intersection of the two surfaces.
22+ y?> =4 and z =2y
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2z = Y cos0anB
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Example: Sketch the curve z = cos?t, y = sin?¢, and z = ¢.
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