Normal Vector

In 14.2 we proved $\mathbf{r}(t)$ is orthogonal to $\mathbf{r}^{\prime}(t)$, which can be extended to $\mathbf{T}^{\prime \prime}(t)$ and $\mathbf{T}(t)$. The unit vector in the direction of $\mathbf{T}^{\prime}(t)$ is called the normal vector and denoted $\mathbf{N}(t)$.

$$
\begin{gathered}
\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|} \\
\mathbf{o}^{\prime}(t)=v(t) \kappa(t) \mathbf{N}(t)
\end{gathered}
$$

For a plane curve, $\mathbf{N}(t)$ points in the direction of bending

1. Consider the helix

$$
\mathbf{r}(t)=\langle 2 \cos (t), 2 \sin (t), t\rangle
$$

Show that for all t, the normal vector is parallel to the $x y$-plane and points toward the z-axis.

Binormal Vector

At a point P on a curve, the vectors \mathbf{T} and \mathbf{N} determine a plane. The normal vector to this plane, \mathbf{B} (Binormal Vector) is defined by

$$
\mathrm{B}=\mathrm{T} \times \mathrm{N}
$$

\mathbf{B} is orthogonal to both \mathbf{T} and \mathbf{N}
\mathbf{B} is a unit vector since $\|\mathbf{B}\|=\|\mathbf{T}\|\|\mathbf{N}\| \sin (\pi / 2)=(1)(1)(1)=1$

Frenet Frame the set of mutually perpendicular vectors B, T, and \mathbf{N}.

2. Determine the binormal vector for the helix

$$
\mathbf{r}(t)=\langle 2 \cos (t), 2 \sin (t), t\rangle
$$

3. Find the normal and binormal vectors for

$$
\vec{r}(t)=\langle t, 3 \sin t, 3 \cos t\rangle
$$

