Partial derivatives are computed just like ordinary derivatives in one variable with this difference: To compute $f_{x}$, treat $y$ as a constant, and to compute $f_{y}$, treat $x$ as a constant.


1. Compute the partial derivatives of $f(x, y)=x^{2} y^{5}$
2. Calculate $g_{x}(1,3)$ and $g_{y}(1,3)$, where $g(x, y)=\frac{y^{2}}{\left(1+x^{2}\right)^{3}}$
3. Calculate $\frac{d}{d x} \sin \left(x^{2} y^{5}\right)$
4. Calculate $f_{z}(0,0,1,1)$, where $f(x, y, z, w)=\frac{e^{x z+y}}{z^{2}+w}$
5. Calculate the second-order partial derivatives of $f(x, y)=x^{3}+y^{2} e^{x}$
6. Calculate $f_{x y y}$ for $f(x, y)=x^{3}+y^{2} e^{x}$

## Clairut's Theorem: Equality of Mixed Partials

If $f_{x y}$ and $f_{y x}$ are both continuous functions on a disk $D$, then $f_{x y}(a, b)=f_{y x}(b, a)$ for all $(a, b) \in D$.

$$
\frac{d^{2} f}{d x d y}=\frac{d^{2} f}{d y d x}
$$

7. Calculate the partial derivative $g_{z z w x}$ where $g(x, y, z, w)=x^{3} w^{2} z^{2}+\sin \left(\frac{x y}{z^{2}}\right)$
