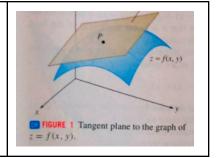


*locally linear - if its graph looks flatter and flatter as we zoom in on point P(a, b, f(a, b))

Equation of the Tangent Plane

If f(x, y) is locally linear at (a, b), then its tangent plane is given by the equation

$$z = f(a, b) + f_{x}(a, b)(x - a) + f_{y}(a, b)(y - b)$$



1. Given that $f(x, y) = 5x + 4y^2$ is differentiable. Find the equation of the tangent plane at (2, 1).

2. Find a tangent plane of the graph of $f(x, y) = xy^3 + x^2$ at (2, -2).

Multivariable Calculus 15.4 Differentiability and Tangent Planes

3. What is the equation of the tangent plane at (1,1) to the surface $4 - x^2 - y^2 = z$.

a. Estimate f(1, 1, 0, 9) given f(x, y) = z

Recall how we approximated function values in 2d:

This idea continues into multiple variables and dimensions so long as it is locally linear. Try to write an equation that represents a linear approximation in 3d.

We can also write the linear approximation in term of the change in $f: \Delta f = f(x, y) - f(a, b)$

$$\Delta f \approx f_x(a, b)\Delta x + f_y(a, b)\Delta y$$
$$\Delta f \approx df, \quad \Delta x \approx dx, \quad \Delta y \approx dy$$
$$df = f_x(x, y)\Delta x + f_y(x, y)\Delta y = \frac{df}{dx}dx + \frac{df}{dy}dy$$

4. Use the linear approximation to estimate $(3.93)^3(1.01)^4(1.98)^{-1}$

5. Use differentials to find an approximate value for $\sqrt{1.03^2 + 1.98^3}$

6. Find the total differential of $W = x^5 y^3 + x^2 z^4$

7. Estimate the amount of material in a closed can (right circular cylinder) with a radius of 3 inches and a height of 8 inches if the material of the can is 0.04 inches thick.