*locally linear - if its graph looks flatter and flatter as we zoom in on point $P(a, b, f(a, b))$

Equation of the Tangent Plane

If $f(x, y)$ is locally linear at (a, b), then its tangent plane is given by the equation

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

1. Given that $f(x, y)=5 x+4 y^{2}$ is differentiable. Find the equation of the tangent plane at $(2,1)$.
2. Find a tangent plane of the graph of $f(x, y)=x y^{3}+x^{2}$ at $(2,-2)$.
3. What is the equation of the tangent plane at $(1,1)$ to the surface $4-x^{2}-y^{2}=z$.
a. Estimate $f(1.1,0.9)$ given $f(x, y)=z$

Recall how we approximated function values in 2d:

This idea continues into multiple variables and dimensions so long as it is locally linear. Try to write an equation that represents a linear approximation in 3d.

We can also write the linear approximation in term of the change in $f: \Delta f=f(x, y)-f(a, b)$

$$
\begin{gathered}
\Delta f \approx f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y \\
\Delta f \approx d f, \quad \Delta x \approx d x, \quad \Delta y \approx d y \\
d f=f_{x}(x, y) \Delta x+f_{y}(x, y) \Delta y=\frac{d f}{d x} d x+\frac{d f}{d y} d y
\end{gathered}
$$

4. Use the linear approximation to estimate $(3.93)^{3}(1.01)^{4}(1.98)^{-1}$
5. Use differentials to find an approximate value for $\sqrt{1.03^{2}+1.98^{3}}$
6. Find the total differential of $W=x^{5} y^{3}+x^{2} z^{4}$
7. Estimate the amount of material in a closed can (right circular cylinder) with a radius of 3 inches and a height of 8 inches if the material of the can is 0.04 inches thick.
