1. Evaluate $\iint_D x^2 y dA$, where D is the region in the figure below:

2. Find the volume V of the region between the plane z = 2x + 3y and the triangle D in the figure below:

3. Evaluate $\iint_D e^{y^2} dA$ for $D: 0 \le x \le 4$, $\frac{1}{2}x \le y \le 2$

16.2 Double Integrals over More General Regions
Multivariable Calculus

4. Sketch the domain of integration D corresponding to $\int_{1}^{9} \int_{\sqrt{y}}^{3} xe^{y} dx dy$ then change the order of integration and evaluate.

5. Find the volume V of the solid bounded above and below by the paraboloids corresponding to $z=8-x^2-y^2$ and $z=x^2+y^2$ and lying over the domain $D=\{(x,y): -1 \le x \le 1, -1 \le y \le 1\}$

6. Evaluate the following:

a.
$$\int_{0}^{1} \int_{x-2}^{\cos \pi x} y dy dx$$

$$b. \int_{0}^{7} \int_{0}^{\sqrt{y}} 2x \cos x^2 dx dy$$

c.
$$\int_{0}^{8-x+8} \int_{0}^{-x+8} (2x + 5y)^{2} dy dx$$