Remember:

$$
x=r \cos \theta \quad y=r \sin \theta
$$

Double Integral in Polar Coordinates For a continuous function f on the domain

$$
\begin{gathered}
D: \theta_{1} \leq \theta \leq \theta_{2^{\prime}} \quad r_{1}(\theta) \leq r \leq r_{2}(\theta) \\
\iint f(x, y) d A=\int_{\theta_{1}}^{\theta_{2}} \int_{r=r_{1}(\theta)}^{r=r_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
\end{gathered}
$$

1. Compute $\iint_{D}(x+y) d A$, where D is the quarter annulus in the figure below:

2. Calculate $\iint_{D}\left(x^{2}+y^{2}\right)^{-2} d A$ for the shaded domain D in the figure below:

3. Evaluate $\iint_{D} 2 x y d A, D$ is the portion of the region between the circles of radius 2 and radius 5 centered at the origin that lies in the first quadrant.
4. Evaluate $\iint_{D} e^{x^{2}+y^{2}} d A, D$ is the unit disk centered at the origin.
5. Determine the area of the region that lies inside $r=3+2 \sin \theta$ and outside $r=2$
6. Determine the volume of the region that lies under the sphere $x^{2}+y^{2}+z^{2}=9$, above the plane $z=0$ and inside the cylinder $x^{2}+y^{2}=5$

7. Find the volume of the region that lies inside $z=x^{2}+y^{2}$ and below the plane $z=16$

