16.4 Integration in Spherical Coordinates
 Multivariable Calculus

Conversion formulas for spherical coordinates:

$$
\begin{gathered}
x=\rho \sin \varphi \cos \theta \quad y=\rho \sin \varphi \sin \theta \quad z=\rho \cos \varphi \\
x^{2}+y^{2}+z^{2}=\rho^{2} \\
\rho \geq 0 \quad 0 \leq \varphi \leq \pi
\end{gathered}
$$

We will be slicing our solid into spherical wedges to calculate the integrals:

Triple Integrals in Spherical Coordinates:

$$
\iiint_{E} f(x, y, z) d V=\int_{\delta}^{\gamma} \int_{\alpha}^{\beta} \int_{a}^{b} \rho^{2} \sin \varphi f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) d \rho d \theta d \varphi
$$

Evaluate $\iiint_{E} 16 z d V$ where E is the upper half of the sphere $x^{2}+y^{2}+z^{2}=1$.

Evaluate $\iiint_{E} 10 x z+3 d V$ where E is the region portion of $x^{2}+y^{2}+z^{2}=16$ with $z \geq 0$.

Evaluate $\iiint_{E} 3 z d V$ where E is the region inside both $x^{2}+y^{2}+z^{2}=1$ and $z=\sqrt{x^{2}+y^{2}}$.

Evaluate $\iiint_{E} z x d V$ where E is inside both $x^{2}+y^{2}+z^{2}=4$ and the cone (pointing upward) that makes an angle of $\frac{\pi}{3}$ with the negative z-axis and has $x \leq 0$.

$$
\text { Convert } \int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{18-x^{2}-y^{2}}} x^{2}+y^{2}+z^{2} d z d x d y \text { into spherical coordinates. }
$$

