Video: https://www.youtube.com/watch?v=wUF-lyyWpUc

Suppose that we want to integrate f(x,y) over the region R. Under the transformation x=g(u,v), y=h(u,v) the region becomes S and the integral becomes,

$$\iint\limits_{R}f\left(x,y
ight) \,dA=\iint\limits_{S}f\left(g\left(u,v
ight) ,h\left(u,v
ight)
ight) \leftert rac{\partial \left(x,y
ight) }{\partial \left(u,v
ight) }
ightert \,d\overline{A}% \left(x,y
ight) dA$$

1. Show that when changing to polar coordinates we have $dA = rdrd\theta$

2. Evaluate $\iint_R x + ydA$ where R is the trapezoidal region with vertices given by $(0,0), (5,0), (\frac{5}{2},\frac{5}{2}), \text{ and } (\frac{5}{2},-\frac{5}{2})$ using the transformation x=2u+3v and y=2u-3v.

3. Evaluate $\iint_R x^2 - xy + y^2 dA$ where R is the ellipse given by $x^2 - xy + y^2 \le 2$ and using the transformation $x = \sqrt{2}u - \sqrt{\frac{2}{3}}v$, $y = \sqrt{2}u + \sqrt{\frac{2}{3}}v$.

4. Verify that $dV = \rho^2 \sin \varphi d\rho d\theta d\varphi$ when using spherical coordinates.