The line integral of f with respect to x is,

$$
\int_{C} f(x, y) d x=\int_{a}^{b} f(x(t), y(t)) x^{\prime}(t) d t
$$

1. Evaluate $\int_{C} \sin (\pi y) d y+y x^{2} d x$ where C is the line segment from $(0,2)$ to $(1,4)$
2. Evaluate $\int_{C} y d x+x d y+z d z$ where C is given by $x=\cos t, y=\sin t, z=t^{2}$, $0 \leq t \leq 2 \pi$.
