Take the simple (doesn't intersect) closed curve C below and let D be the region enclosed by the curve.

Positive Orientation: The direction placed on the curve is in the counterclockwise direction. (as the curve is traced region D is always on the left)

Green's Theorem

Let C be a positively oriented, piecewise smooth, simple, closed curve and let D be the region enclosed by the curve. If P and Q have continuous first order partial derivatives on D then,

$$
\int_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

Alternate notations:

$$
\oint_{C} P d x+Q d y
$$

1. Use Green's Theorem to evaluate $\oint x y d x+x^{2} y^{3} d y$ where C is the triangle with vertices $(0,0),(1,0),(1,2)$ with positive orientation
2. Evaluate $\oint_{C} y^{3} d x-x^{3} d y$ where C is the positively oriented circle of radius 2 centered at the origin.
