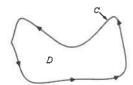
Take the simple (doesn't intersect) closed curve C below and let D be the region enclosed by the curve.



Positive Orientation: The direction placed on the curve is in the counterclockwise direction. (as the curve is traced region D is always on the left)

Green's Theorem

Let C be a positively oriented, piecewise smooth, simple, closed curve and let D be the region enclosed by the curve. If P and Q have continuous first order partial derivatives on D then,

$$\int_{C} P dx + Q dy = \int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Alternate notations:

$$\oint_C Pdx + Qdy$$

check conditions 1. Use Green's Theorem to evaluate $\oint xy \, dx + x^2y^3 \, dy$ where C is the triangle with vertices (0,0), (1,0), (1,2) with positive orientation

05 x 51

$$P = xy \quad Q = x^2y^3$$

$$\frac{\partial P}{\partial y} = x$$
 $\frac{\partial Q}{\partial x} = 2xy^3$

$$\begin{cases} 2x \\ 3 \\ 3 \\ 2xy^3 - x \end{cases} dy dx$$

$$= \boxed{2}$$

0 ≤ y ≤ 2x

2. Evaluate $\oint y^3 dx - x^3 dy$ where *C* is the positively oriented circle of radius 2 centered at the origin.

$$P = y^{3} \qquad Q = -x^{3}$$

$$\partial P = 3y^{2} \qquad \partial Q = -3x^{2}$$

$$\chi^{2} + y^{2} = r^{2} \cos^{2}\Theta + r^{2} \sin^{2}\Theta$$

$$= r^{2} (\cos^{2}\Theta + \sin^{2}\Theta)$$

$$= r^{2}$$

$$Q = -x^{3}$$

$$Q = -x^{3}$$

$$Q = -3x^{2}$$

$$-3 \int (-3x^{2} - 3y^{2}) dA$$

$$-3 \int (x^{2} + y^{2}) dA$$

$$x^{2} + y^{2} = r^{2} \cos^{2}\theta + r^{2} \sin^{2}\theta$$

$$= r^{2} (\cos^{2}\theta + \sin^{2}\theta)$$

$$= r^{2} \int (\cos^{2}\theta + \sin^{2}\theta) dA$$

$$= r^{2} \int (\cos^{2}\theta + \sin^{2}\theta) dA$$