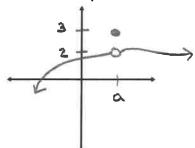


- 1. Place your pencil on the graph
- Trace along the graph...STOP when you are about to hit the point where x = 5, but you don't actually hit that point (get infinitely close!)
- 3. What are you about to hit? (5,7) $\lim_{x \to 5} f(x) = 7$

11m function = y-value

- 4. What is $f(5) = _{7}$
- 5. Will $\lim_{x\to a} f(x)$ always be the same value as f(a)? Can you draw a sketch of a graph in which they are NOT equal?



 $x \to a$ f(x) = 2 but f(a) = 3limit is what function you are about to the ac hit when infinitely 6x = 1close to x-value

function value is the actual point @ x-value

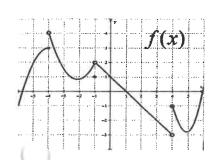
3 is to solve a limit:

Tabular

Find $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$

x approaches 1 from the left ⇒				x approaches 1 from the right			
x	0.9	0.99	0.999	1	1.001	1.01	1.1
f(x)	1.9	1.99	1.999	und	2.001	2.01	2.1

Graphically



$$\lim_{x\to 2}f(x)=-1$$

$$\lim_{x\to 0}f(x)=$$

$$\lim_{x\to -1} f(x) = 2$$

What do you think the $\lim_{x \to -4} f(x) = ?$

und! approaching 2 different values from left & right

Algebraically

b/c limf(e) = f(a) when

*only works if the function is <u>continuous</u> or can manipulate function to evaluate

$$\lim_{x \to -1} \sqrt{5x^2 + 4} = \sqrt{5(-1)^2 + 4} = 3$$

$$\lim_{x \to -1} \sqrt{5x^2 + 4} = \sqrt{5(-1)^2 + 4} = 3$$

$$2 = -1$$

$$\lim_{x\to 1} \frac{x^2-1}{x-1} = \lim_{x\to 1} \frac{(x+1)(x-1)}{x-1} = \lim_{x\to 1} x+1$$

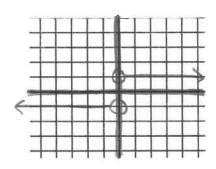
$$e \otimes x = 1$$

*hole $\Theta \times = 1$ we are ignoring it = 1+1
by canceling $\times -1 \le L$ = z

evaluating $\Theta \times = 1$

2.1 Rates of Change and Limits **AP AB Calculus**

One Sided Limits



$$f(x) = \frac{x}{|x|}$$

$$\lim_{x\to 0^-} f(x) = -1$$
 approach from left

$$\lim_{x\to 0^+} f(x) = 1$$
 approach from right

Properties of Limits:

Limits of Sums, Differences, Products, Powers, Roots, and Quotients:

1. Sum Rule

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2. Difference Rule

$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3. Product Rule

$$\lim_{x \to a} [f(x) * g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

4. Constant Multiple Rule

$$\lim_{x \to a} [k * f(x)] = \bigwedge_{x \to a} \bigwedge_{x \to a} f(x)$$

5. Power Rule

5. Power Rule
$$\lim_{x \to a} [f(x)]^n = \lim_{x \to a} f(x)$$
6. Quotient Rule

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

Sandwich Theorem

Show that $\lim x^2 \sin x = 0$

sing bounded between -1 and 1 3

manipulate 3 components to be function

$$-1(x^2) \leq x^2 \sin x \leq 1(x^2)$$