
2.3 AP Style Questions

1. The graph of the function f is shown below. What are all the values of x for which f has a removable discontinuity?

- b. 1 only
- c. 0 and 2 only
- d. 0, 1, and 2 only

- 2. Let f be the function defined by $f(x) = \frac{3x^3 + 2x^2}{x^2 x}$. Which of the following statements is true?
 - $oldsymbol{A}$ f has a discontinuity due to a vertical asymptote at x=0 and at x=1.
 - $oxed{\mathbf{B}}$ f has a removable discontinuity at x=0 and a jump discontinuity at x=1.
 - f has a removable discontinuity at x=0 and a discontinuity due to a vertical asymptote at x=1.
 - $oldsymbol{\mathsf{D}}$ f is continuous at x=0, and f has a discontinuity due to a vertical asymptote at x=1.

$$\frac{x^{2}(3x+2)}{x(x-1)}$$

$$= \frac{x(3x+2)}{x-1}$$

$$= \frac{x(3x+2)}{x-1}$$

$$\lim_{x \to 1^-} f(x) = 3 \quad \lim_{x \to 1^+} f(x) = 3$$

3. Let f be the piecewise function below. Which of the following statements is false?

$$f$$
 is continuous at $x = 1$

16.
$$f$$
 is continuous at $x = 2$ polynomial

c. Dis continuous at
$$x = 3$$

M.
$$f$$
 is continuous at $x = 2$ polynomial

C. Dis continuous at $x = 3$

M. f is continuous at $x = 4$ polynomial

 $f(x) = \begin{cases} x^2 + 2x & \text{for } x < 1 \\ 3 & \text{for } x = 1 \\ x^3 + x^2 + x & \text{for } 1 < x < 3 \\ 0 & \text{for } x = 3 \\ 2x + 1 & \text{for } x > 3 \end{cases}$

$$\lim_{x \to 3^{-}} - f(x) = 3^{-3} + 3^{2} + 3 = 39$$

$$\lim_{x \to 3^{+}} + f(x) = 0$$

4. What is the domain of the function given by $f(x) = \frac{\sqrt{x^2-4}}{x-3}$?

a.
$$\{x : x \neq 3\}$$

b.
$$\{x : |x| \le 2\}$$

c.
$$\{x : |x| \ge 2\}$$

(d.)
$$\{x : |x| \ge 2 \text{ and } x \ne 3\}$$

e.
$$\{x : x \ge 2 \text{ and } x \ne 3\}$$

$$x^2 - 4 \ge 0$$
 $x \ne 3$

Let f be the function defined by $f(x) = \begin{cases} x^2 + 2 & \text{for } x \leq 3, \\ 6x + k & \text{for } x > 3. \end{cases}$ 5.

If f is continuous at x=3, what is the value of k?

$$|m| + f(x) = 3^2 + 2$$
 $|m| + f(x) = 6(3) + K$

$$\lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} f(x)$$

$$2(x^2+7x-8)$$

 $2\left(x^2+7x-8\right)$ Let f be the function given by $f(x)=\frac{2x^2+14x-16}{x^2-9x+8}$. For what values of x does f have a removable discontinuity? 6.

1 only

8 only

- -8 and 1
- 1 and 8

$$f(x) = \left\{ egin{array}{ll} a^2 + x^2 & ext{for } x < 3 \ a(x+3) & ext{for } x \geq 3 \end{array}
ight.$$

7. Let f be the function defined above, where a is a constant. For what values of a, if any, is f continuous at x=3?

$$\lim_{x \to 3^{-}} f(x) = 9 + a^{2}$$
 $\lim_{x \to 3^{+}} f(x) = 6a$

$$\lim_{x \to 3^+} f(x) = 6a$$

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x)$$

$$(a-3)^2 = 0$$

a2 -6a +9 =0

				1