1. Find the average rate of change of $f(x) = \cos t$ over the interval $[0, \pi]$

Instantaneous Rate of Change

Example:

1. Find the slope of the tangent line to the graph of $f(x) = x^2 + x$ at (2, 6).

AB Calculus 2.4 Rates of Change and Tangent Lines

2. Find the slope of the tangent line to the graph $f(x) = \frac{2}{x}$ at (1, 2). Then find the tangent line at the given point.

Limit Definition of the Slope (derivative)	Alternative Definition
$m_{tan} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \text{slope at } a$	$m_{tan} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

3. The equations below, if evaluated, will give the slope of a tangent line at some exact x –value on a function. Determine what that x –value is and the function.

a.
$$\lim_{h \to 0} \frac{\sqrt{2+h} - \sqrt{2}}{h}$$
 c. $\lim_{x \to 3} \frac{5x^2 - 45}{x - 3}$

b.
$$\lim_{h \to 0} \frac{(1+h)^3 - 2 - (-1)}{h}$$
 d. $\lim_{x \to \frac{1}{3}} \frac{\ln x - \ln(1/3)}{x - 1/3}$

AB Calculus 2.4 Rates of Change and Tangent Lines