1. Find the average rate of change of $f(x)=\cos t$ over the interval $[0, \pi]$

Instantaneous Rate of Change

Slope of the tangent Line to a Curve at a Point

The slope of the tangent line to the graph of a function $y=f(x)$ at ($a, f(a)$) is given by:

Provided that this limit exists. This limit describes:

- The slope of the graph of f at $(a, f(a))$

Want secant line to be as close to tangent line as possible:

- The instantaneous rate of change of f with respect to x at a

Example:

1. Find the slope of the tangent line to the graph of $f(x)=x^{2}+x$ at $(2,6)$.
2. Find the slope of the tangent line to the graph $f(x)=\frac{2}{x}$ at $(1,2)$. Then find the tangent line at the given point.

Limit Definition of the Slope (derivative)	Alternative Definition
$m_{t a n}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=$ slope at a	$m_{t a n}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$

3. The equations below, if evaluated, will give the slope of a tangent line at some exact x-value on a function. Determine what that x-value is and the function.
a. $\lim _{h \rightarrow 0} \frac{\sqrt{2+h}-\sqrt{2}}{h}$
b. $\lim _{h \rightarrow 0} \frac{(1+h)^{3}-2-(-1)}{h}$
c. $\lim _{x \rightarrow 3} \frac{5 x^{2}-45}{x-3}$
d. $\lim _{x \rightarrow \frac{1}{3}} \frac{\ln x-\ln (1 / 3)}{x-1 / 3}$

AB Calculus
2.4 Rates of Change and Tangent Lines

