Derivative of a Function

Let $y=f(x)$ denote a function f. The derivative of f at x, denoted by $f^{\prime}(x)$, read " f prime of x," is defined by
$f^{\prime}(x)=$
provided that this limit exists. The derivative of a function f gives the slope of f for any value of x is the domain of f '.

1. Find the slope of the function $f(x)=\sqrt{x}$.

Alternative Definition: The derivative of the function f at the point $x=a$ is the limit $f^{\prime}(a)=$	

2. Use the definition $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ to find the derivative of $f(x)=2 x+3$ at $a=-1$.

Different ways to write the derivative:
1.
2.
3.
4.

Comparing graphs of derivative to function:

(a)
2. Sketch the graph of a function f that has the following properties:
I. $\quad f(0)=0$
II. The graph of f^{\prime} is shown below
III. f is continuous for all x

3. Sketch a graph of the derivative from the function below.

One-Sided Derivatives

A function $y=f(x)$ is differentiable on a closed interval $[a, b]$ if it has a derivative at every interior point of the interval, and if the limits

$$
\begin{array}{ll}
\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h} & \text { [the right-hand derivative at } a \text {] } \\
\lim _{h \rightarrow 0^{-}} \frac{f(b+h)-f(b)}{h} & {[\text { the left-hand derivative at } b]}
\end{array}
$$

exist at the endpoints. In the right-hand derivative, h is positive and $a+h$ approaches a from
4. Show that the following function has left-hand and right-hand derivatives at $x=0$, but no derivative at $x=0$

$$
y= \begin{cases}x^{2}, & x \leq 0 \\ 2 x, & x>0\end{cases}
$$

