Where $f^{\prime}(a)$ Does Not Exist

1. Corner

2. Cusp

3. Vertical Tangent

4. Discontinuity

5. Determine where the function is not differentiable:
a. $\quad f(x)=|x-2|+3$
b. $\quad q(x)=3 \cos (|x|)$
c. $\quad h(x)=\sqrt[3]{3 x-6}+5$
6. Determine the values of a and b which would result in the function $f(x)$ being differentiable at $x=1$.
$f(x)=\left\{\begin{array}{lll}3 a x+2 & \text { for } & x<1 \\ b x^{2}-x-3 & \text { for } & x \geq 1\end{array}\right.$
7. Use the graph of the function $f(x)$ shown below in order to determine all values of x in the interval $-9<x<9$ where the function is continuous but not differentiable.

8. Use the graph of the function $f(x)$ shown below in order to determine all values of x in the interval $-9<x<9$ where the function is not differentiable.

9. Determine whether the function is differentiable, continuous, both, or neither at $x=-4$

$$
f(x)= \begin{cases}x^{2}+13 x+2, & x<-4 \\ 5 x-14, & x \geq-4\end{cases}
$$

