AB Calculus
3.3 Rules for Differentiation

! RULE 1 Derivative of a Constant Function

If £ is the function with the constant value ¢, then
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! RULE2 Power Rule for Positive Integer Powers of x
| Ifnis a positive integer, then
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RULE 3 The Constant Multiple Rule x oefficie n’d'
If u is a differentiable function of x and c is a constant, then S'\‘ua s
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RULE 4 The Sum and Difference Rule

If u and v are differentiable functions of x, then their sum and difference are differ-
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entiable at every point where u and v are differentiable. At such points, ‘
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RULE S The Product Rule
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The product of two differentiable functions « and v is differentiable, and
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RULE 6 The Quotient Rule

At a point where v # 0, the quotient y = u/v of two differentiable functions is dif-
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RULE 7 Power Rule for Negative integer Powers of x
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4. Suppose zand vare functions of xthat are differentiable at x =2 and that

u(2)=3,u'(2)=-3, v(2)=-1, and v'(2)=2. Find the values of the following
derivatives at x =2.
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Higher Order Derivatives

The derivative y' = % is called the lat+ Oeratweof ywith respect to x

*First derivative may be differentiable

zy__d_[_d_)iz
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The derivative of the first derivative is called the ©€conNd  der \UCCH\YC
of ywith respect to x

*If y" (7 y o odble - prl me” ) is differentiable, its derivative

The derivative of the second derivative is called the _third _derwehve of i
with respect to x.

Prime notation continues:

) _ dy(n—l) _ dny
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to denote the n*h dervahue

of ywith respect to x.

5. Find the first four derivatives of the function.
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6. An orange farmer currently has 200 trees yielding and average of 15 bushels
of oranges per tree. She is expanding her farm at the rate of 14 trees per
year, while improved husbandry is improving her average annual yield by 1.2
bushels per tree. What is the current (instantaneous) rate of increase of her
total annual production of oranges?

(X)) = # of trees % awr‘s £reom o

a(")’é &nelo\ per tree X &eﬁfs fream row

k m okt jplicodien
ot eddrhon pU) = £ (W (s total ?r‘oducf\mﬂ ot orenges N
ole 4ol eimls g x
NORRECIRITS o
~__
+HX) fames t(e) = 200 5(@: |\ 5
30‘)‘(‘400 t’ (O> = 4 8‘ (&) =12
P (0) = Instartonesos e & weresse
(.or‘f‘eﬂ‘\‘\a

p' (o) = ¢! COD&(O) Ty (O£
= 14(18) + (.2 (200
= 210 + 24O

= 450 poshds per Yeot



