DEFINITION Instantaneous Velocity

The (instantaneous) velocity is the derivative of the position function $s=f(t)$ with respect to time. At time t the velocity is

$$
v(t)=\frac{d s}{d t}=
$$

1. Assume a police station is located along a straight east-west freeway. At noon $(\mathrm{t}=0)$, a patrol car leaves the station heading east. The position function of the car $s=f(t)$ gives the location of the car in miles east ($s>0$) or west $\quad(s<0)$ of the station t hours after noon.
a. Describe the location of the patrol car during the first 3.5 hours of the trip.

b. Calculate the average velocity of the car between noon and 2:00 pm. $(0 \leq t \leq 2)$.
c. Calculate the displacement and average velocity of the car between 2:00 pm and 3:30 pm $(2 \leq t \leq 3.5)$
d. At what time(s) is the instantaneous velocity greatest as the car travels east?
e. At what time(s) is the patrol car at rest?

DEFINITION Speed

Speed is the absolute value of velocity.
Speed =
2. A student walks around in front of a motion detector that records her velocity at 1-second intervals for 36 seconds. She stores the data in her graphing calculator and uses it to generate the time-velocity graph shown below. Describe her motion as a function of time by reading the velocity graph. When is her speed a maximum?

DEFINITION Acceleration

Acceleration is the derivative of velocity with respect to time. If a body's velocity at time t is $v(t)=d s / d t$, then the body's acceleration at time t is

$$
a(t)=
$$

2017 AP Test \#5 \rightarrow No Calculator

Two particles move along the x-axis. For $0 \leq t \leq 8$, the position of particle P at time t is given by $x_{P}(t)=\ln \left(t^{2}-2 t+10\right)$, while the velocity of particle Q at time t is given by $v_{Q}(t)=t^{2}-8 t+15$.
Particle Q is at position $x=5$ at time $t=0$.
(a) For $0 \leq t \leq 8$, when is particle P moving to the left?
(b) For $0 \leq t \leq 8$, find all times t during which the two particles travel in the same direction.
(c) Find the acceleration of particle Q at time $t=2$. Is the speed of particle Q increasing, decreasing, or neither at time $t=2$? Explain your reasoning.
(d) Find the position of particle Q the first time it changes direction.

2016 AP Test \#2 \rightarrow Calculator Active

For $t \geq 0$, a particle moves along the x-axis. The velocity of the particle at time t is given by $v(t)=1+2 \sin \left(\frac{t^{2}}{2}\right)$. The particle is at position $x=2$ at time $t=4$.
(a) At time $t=4$, is the particle speeding up or slowing down?
(b) Find all times t in the interval $0<t<3$ when the particle changes direction. Justify your answer.
(c) Find the position of the particle at time $t=0$.

