Trig Derivative Rules:

$$\frac{d}{dx}\sin x =$$

$$\frac{d}{dx}\cos x =$$

1. Find
$$\frac{dy}{dx}$$
 of:

a.
$$y = 2\sin x - \cos x$$

$$c. \quad y = \frac{\cos x}{1 + \sin x}$$

b.
$$y = x \sin x$$

Derivatives of Other Basic Trig Functions

$$\frac{d}{dx}\tan x =$$

$$\frac{d}{dx}\cot x =$$

$$\frac{d}{dx}\csc x =$$

$$\frac{d}{dx}\sec x =$$

2. Find
$$\frac{dy}{dx}$$
 of:

a.
$$y = 3x + x \tan x$$

c.
$$y = \sin x \cos x$$

$$b. \quad y = \frac{1 - \sin x}{1 + \sin x}$$

d.
$$y = \sec x + \csc x$$

$$e. \quad y = \frac{\cot x}{4}$$

3. Find the first 4 higher order derivatives of $y = \cos x$

4. Find equations for the lines that are tangent and normal to the graph of

$$f(x) = \frac{\tan x}{x}$$
 at $x = 2$.