Recall Theorems from last class.


Given:
$\angle 1 \cong \angle 2$

Prove: $\quad m \| n$


| Statements | Reasons |
| :--- | :--- |
| 1. | 1. |
| 2. | 2. |
| 3. | 3. |
| 4. | 4. |

Objectives:
The student will be able to apply theorems to prove lines are parallel.
The student will be able to apply theorems to solve equations and angle measures.


| Converse of <br> Corresponding <br> Angles Postulate | If two lines are cut by a transversal so <br> that corresponding angles are <br> congruent, then the lines are parallel | If $\angle 1 \cong \angle 5, \angle 2 \cong \angle 6, \angle 3 \cong \angle 7$, <br> or $\angle 4 \cong \angle 8$, then $m \\| n$. |
| :--- | :--- | :--- |
| Alternate Exterior <br> Angles Converse | If two lines in a plane are cut by a <br> transversal so that a pair of alternate <br> exterior angles is congruent, then the <br> two lines are parallel |  |
| Consecutive <br> Interior Angles <br> Converse | If two lines in a plane are cut by a <br> transversal so that a pair of <br> consecutive interior angles is <br> supplementary, then the lines are <br> parallel. |  |
| Alternate Interior <br> Angles Converse | If two lines in a plane are cut by a <br> transversal so that a pair of alternate <br> interior angles is congruent, then the <br> lines are parallel |  |
| Perpendicular <br> transversal <br> Converse | In a plane, if two lines are <br> perpendicular to the same line, then <br> they are parallel. |  |
| Parallel Postulate | If given a line and a point not on the <br> line, then there exists exactly one line <br> through the point that is parallel to <br> the given line. |  |

## Examples:

1. Find the value of $x$ so that $m \| n$

2. Find the value of $x$ so that $m \| n$

3. Find the value of $x$ so that $m \| n$

4. Is there enough information to prove $m \| n$ ? If so state the theorem or postulate that you would use.
a.

C.

d.

5. In the figure $\overline{B G}$ bisects $\angle A B H$ Determine which lines if any are parallel.

6. Find $x$ so that $m \| n$

7. Is $\overrightarrow{E B} \| \overrightarrow{H D}$ ?

