One-to-One Functions

In a one-to one function, each x -value corresponds to only \qquad y-value, and each y-value corresponds to only \qquad x -value.

1. Determine whether each function is one-to-one.
a. $f(x)=-3 x+7$
b. $f(x)=\sqrt{49-x^{2}}$

Horizontal Line Test

2. Determine whether each graph is the graph of a one-to-one function.
(a)

(b)

Inverse Functions

Inverse Function

Let f be a one-to-one function. Then g is the inverse function of f if

$$
(f \circ g)(x)=x \quad \text { for every } x \text { in the domain of } g
$$

and

$$
(g \circ f)(\boldsymbol{x})=\boldsymbol{x} \quad \text { for every } x \text { in the domain of } f
$$

The condition that f is one-to-one in the definition of inverse function is essential.

 Otherwise, g will not define a \qquad .3. Let functions f and g be defined respectively by

$$
f(x)=2 x+5 \text { and } g(x)=\frac{1}{2} x-5
$$

Is g the inverse function of f ?
*By the definition of inverse function, the \qquad of f is the \qquad of f^{-1}, and the \qquad of f is the \qquad of f^{-1}
4. Find the inverse of each function that is one-to-one.
(a) $F=\{(-2,-8),(-1,-1),(0,0),(1,1),(2,8)\}$
(b) $G=\{(-2,5),(-1,2),(0,1),(1,2),(2,5)\}$

Equations of Inverses

The inverse of a one-to-one function is found by interchanging the x - and y-values of each of its ordered pairs. The equation of the inverse function defined by $y=f(x)$ is found in the same way.
5. Determine whether each equation defines a one-to-one function. If so, find the equation of the inverse.
a. $f(x)=|x|$
b. $y=4 x-7$
c. $\quad h(x)=x^{3}+2$
6. The following rational function is one-to-one. Find its inverse.

$$
f(x)=\frac{-3 x+1}{x-5}, x \neq 5
$$

7. Let $f(x)=x^{2}+4, x \leq 0$. Find $f^{-1}(x)$.

Important Facts about Inverses:

1. If f is one-to-one, then f^{-1} \qquad
2. The domain of f is the \qquad of f^{-1}, and the range of f is the
\qquad of f^{-1}
3. If the point (a, b) lies on the graph of f, then the point \qquad lies on the graph of f^{-1}. The graphs of f and f^{-1} are reflections of each other across the line
\qquad —.
4. To find the equation for f^{-1}, replace $f(x)$ with y, interchange \qquad and \qquad and solve for y. This gives $f^{-1}(x)$.
