1. Approximate the following with a calculator. Round answers to the nearest thousandth. b. $e^{2.75}$

a.
$$5^{-1.5}$$

Parent Graph of an exponential:

Domain: _____

Range: _____

Horizontal Asymptote: _____

Key points: _____

2. Draw a sketch of each exponential function:

3. Solve the following exponential equations:

a.
$$5^x = \frac{1}{125}$$
 b. $3^{x+1} = 9^{x-3}$ c. $x^{2/3} = 251$

Compound Interest Formulas	
$A = P\left(1 + \frac{r}{n}\right)^{nt}$	$A = P e^{rt}$

- 4. Find the accumulated value of an investment of \$5000 for 10 years at an interest rate of 6.5% if the money is:
 - a. Compounded semiannually

b. Compounded monthly

- 5. Suppose you have \$6000 to invest. Which investment yields the greatest return over 4 years:a. 8.25% compounded quarterlyb. 8.3% compounded semiannually
 - c. 8.275% compounded continuously

- 6. The number of bacteria present in a culture can be modeled by the equation $B(t) = 10e^{0.483t}$, where *t* is the time in minutes.
 - a. Find *B*(1). b. What does this mean in context?

4.2 Exponential Functions

Honors Algebra 2 with Trig

7. The 1986 explosion at the chernobyl nuclear power plant in the former Soviet Union sent about 1000 kilograms of radioactive cesium-137 into the atmosphere. The function $f(x) - 1000(0.5)^{x/30}$ describes the amount, f(x), in kilograms, of cesium-137 remaining in Chernobyl x years after 1986. If even 100 kilograms of cesium-137 remain in Chernobyl's atmosphere, the area is considered unsafe for human habitation.

a. Find *f*(80).

b. What does this mean in practical terms?