Let f and g be inverse functions. What is true about inverses?

Theorem 1 Derivatives of Inverse Functions

If *f* is differentiable at every point of an interval *I* and f'(x) is never zero on *I*, then *f* has an inverse *g*, and *g* is differentiable at every point of the interval f(I). If g(x) = x, the **inverse function slope relationship** relates the derivative by the equation

$$g'(x) = \frac{1}{f'(g(x))}$$

1. Let *f* and *g* be function that are differentiable everywhere. If *g* is the inverse function of *f* and if g(-2) = 5 and $f'(5) = -\frac{1}{2}$, then g'(-2) = ?

- 2. Let *f* be a differentiable function such that f(3) = 15, f(6) = 3, f'(3) = -8, and f'(6) = -2. The function *g* is differentiable and $g(x) = f^{-1}(x)$. What is the value of g'(3)?
 - a. $-\frac{1}{2}$ b. $-\frac{1}{4}$ c. $\frac{1}{6}$ d. $\frac{1}{3}$
 - e. The value of g'(3) cannot be determined with the given information.

- 3. The function *h* is given by $h(x) = x^5 + 3x 2$ and h(1) = 2. If h^{-1} is the inverse of *h*, what is the value of $(h^{-1})'(2)$?
 - a. $\frac{1}{83}$ b. $\frac{1}{8}$ c. $\frac{1}{2}$ d. 1
 - e. 8
- 4. Let $f(x) = (2x+1)^3$ and let g(f(x)) = x. Given that f(0) = 1, what is the value of g'(1)?
 - a. $-\frac{2}{27}$ b. $\frac{1}{54}$ c. $\frac{1}{27}$ d. $\frac{1}{6}$ e. 6
- 5. Calc Active: If $f(x) = \sin x + 2x + 1$ and g is the inverse function of f, what is the value of g'(1)?
 - a. $\frac{1}{3}$ b. 1 c. 3 d. $\frac{1}{2+\cos 1}$ e. 2 + cos 1

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}} \qquad \qquad \frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x| \cdot \sqrt{x^2-1}} \\ \frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}} \qquad \qquad \frac{d}{dx}(\csc^{-1}x) = -\frac{1}{|x| \cdot \sqrt{x^2-1}} \\ \frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2} \qquad \qquad \frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}$$

1. Find the derivative of *y* with respect to the appropriate variable. a. $y = \cos^{-1}(\frac{1}{x})$

b. $y = s\sqrt{1-s^2} + \cos^{-1}s$

c.
$$x(t) = \tan^{-1}(t^2), t = 1$$
 d. $y = \sec^{-1}(5s)$

e. $y = \cot^{-1} \sqrt{t}$ f. $y = \csc^{-1} \frac{x}{2}$

2. A particle moves along the x-axis so that its position at any time $t \ge 0$ is given by x(t). Find the velocity at the indicated value of t.

a.
$$x(t) = \sin^{-1}(\frac{\sqrt{t}}{4}), t = 4$$