Let f and g be inverse functions. What is true about inverses?

Theorem 1 Derivatives of Inverse

Functions

If f is differentiable at every point of an interval I and $f^{\prime}(x)$ is never zero on I, then f has an inverse g, and g is differentiable at every point of the interval $f(I)$. If $g(x)=x$, the inverse function slope relationship relates the derivative by the equation

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}
$$

1. Let f and g be function that are differentiable everywhere. If g is the inverse function of f and if $g(-2)=5$ and $f^{\prime}(5)=-\frac{1}{2}$, then $g^{\prime}(-2)=$?
2. Let f be a differentiable function such that $f(3)=15, f(6)=3, f^{\prime}(3)=-8$, and $f^{\prime}(6)=-2$. The function g is differentiable and $g(x)=f^{-1}(x)$. What is the value of $g^{\prime}(3)$?
a. $-\frac{1}{2}$
b. $-\frac{1}{4}$
c. $\frac{1}{6}$
d. $\frac{1}{3}$
e. The value of $g^{\prime}(3)$ cannot be determined with the given information.
3. The function h is given by $h(x)=x^{5}+3 x-2$ and $h(1)=2$. If h^{-1} is the inverse of h, what is the value of $\left(h^{-1}\right)^{\prime}(2)$?
a. $\frac{1}{83}$
b. $\frac{1}{8}$
c. $\frac{1}{2}$
d. 1
e. 8
4. Let $f(x)=(2 x+1)^{3}$ and let $g(f(x))=x$. Given that $f(0)=1$, what is the value of $g^{\prime}(1)$?
a. $-\frac{2}{27}$
b. $\frac{1}{54}$
c. $\frac{1}{27}$
d. $\frac{1}{6}$
e. 6
5. Calc Active: If $f(x)=\sin x+2 x+1$ and g is the inverse function of f, what is the value of $g^{\prime}(1)$?
a. $\frac{1}{3}$
b. 1
c. 3
d. $\frac{1}{2+\cos 1}$
e. $2+\cos 1$

$$
\begin{aligned}
\frac{d}{d x}\left(\sin ^{-1} x\right) & =\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x}\left(\cos ^{-1} x\right) & =-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x}\left(\tan ^{-1} x\right) & =\frac{1}{1+x^{2}}
\end{aligned}
$$

$$
\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{|x| \cdot \sqrt{x^{2}-1}}
$$

$$
\frac{d}{d x}\left(\csc ^{-1} x\right)=-\frac{1}{|x| \cdot \sqrt{x^{2}-1}}
$$

$$
\frac{d}{d x}\left(\cot ^{-1} x\right)=-\frac{1}{1+x^{2}}
$$

1. Find the derivative of y with respect to the appropriate variable.
a. $y=\cos ^{-1}\left(\frac{1}{x}\right)$
b. $y=s \sqrt{1-s^{2}}+\cos ^{-1} s$
c. $\quad x(t)=\tan ^{-1}\left(t^{2}\right), t=1$
$x(t)=\tan ^{-1}$
e. $y=\cot ^{-1} \sqrt{t}$
f. $\quad y=\csc ^{-1} \frac{x}{2}$
2. A particle moves along the x -axis so that its position at any time $t \geq 0$ is given by $x(t)$. Find the velocity at the indicated value of t.
a. $\quad x(t)=\sin ^{-1}\left(\frac{\sqrt{t}}{4}\right), \quad t=4$
