Definition of the Logarithmic Function

For x > 0 and b > 0, $b \ne 1$,

 $y = \log_b x$ is equivalent to $b^y = x$

The function $y = \log_b x$ is a **logarithmic function with base** b

Logarithmic	Exponential
	$3^4 = 81$
$\log_{1/2} 8 = -3$	
	$10^3 = 1000$
$\log_5 \frac{1}{125} = -3$	
	$12^1 = 12$
$\log_6 1 = 0$	

Properties of Logarithms

$$\bigstar \log_b 1 =$$

$$\bigstar \log_b b =$$

$$\bigstar \log_b b^x =$$

$$\bigstar b^{\log_b x} =$$

1. Evaluate each expression without a calculator:

a.
$$\log_7 49 =$$
 b. $\log_3 27 =$

b.
$$\log_{3} 27 =$$

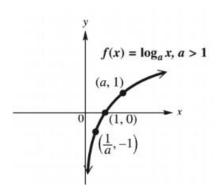
c.
$$\log_6 \sqrt{6}$$

d.
$$\log_6 1 =$$

e.
$$\log_3 \frac{1}{9} =$$

f.
$$\log_{81} 9 =$$

g.
$$\log_{11} 11 =$$
 h. $\log_4 4^6 =$


h.
$$\log_4 4^6 =$$

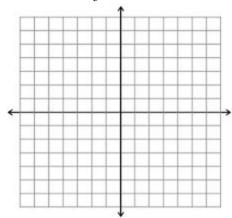
Exponential functions and logarithmic functions are _____

- 2. If f(x) and g(x) are inverse functions, determine the missing function:

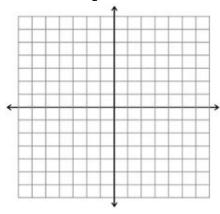
b.
$$f(x) =$$
_____ and $g(x) = \log_7 x$

Parent Graph:

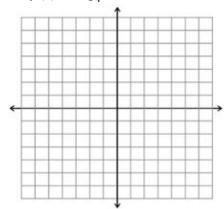
Domain: _____

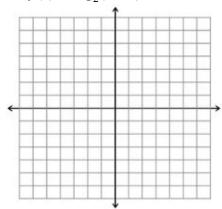

Range: _____

Vertical Asymptote:


Key points:

3. Draw a sketch of each function:


a.
$$f(x) = \log_5 x$$


b.
$$f(x) = \log_2(x+2)$$

c.
$$f(x) = \log_4 x + 2$$

d.
$$f(x) = \log_2(x-3) + 2$$

Common Logarithms	Natural Logarithm
Logarithms with base 10	Logarithms with base e

- 4. Evaluate each expression without a calculator:
- a. $\log 1000 =$ b. $\log 10^8 =$ c. $10^{\log 33} =$ d. $\ln e^6 =$ e. $\ln \frac{1}{e^7} =$ f. $e^{\ln 300} =$

- 5. Simplify each expression:
 - a. $\ln e^{13x}$

b. $10^{\log \sqrt[3]{x}}$

c. $e^{\ln 7x^2}$

Properties of Logarithms:

The Product Rule	$\log_b(MN) = \log_b M + \log_b N$
The Quotient Rule	$\log_b\left(\frac{M}{N}\right) = \log_b M - \log_b N$
The Power Rule	$\log_b M^p = p \log_b M$

- 6. (Beginner) Use properties of logarithms to expand each logarithmic expression. Where possible, evaluate logarithmic expressions without a calculator.
- a. $\log(mn^3)$

b. $\log \frac{u^4}{v}$

c. $\log(ab)^2$

d. $\log \frac{1}{z^3}$

e. $\ln \frac{\sqrt{x}y^4}{z^5}$

- 7. (Intermediate) Use properties of logarithms to expand each logarithmic expression. Where possible, evaluate logarithmic expressions without a calculator.
- a. $\log_8 \frac{64}{\sqrt{x+1}}$

b. $\ln \sqrt{ex}$

c. $\log \frac{x}{1000}$

8. (Advanced) Use properties of logarithms to expand each logarithmic expression. Where possible, evaluate logarithmic expressions without a calculator.

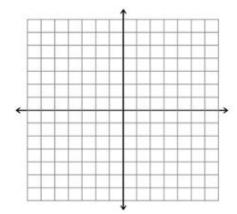
$$\ln \left[\frac{x^4 \sqrt{x^2 + 3}}{\left(x + 3 \right)^5} \right]$$

- 9. Condense the logarithmic expressions using properties of logarithms. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions.
- a. $\log 250 + \log 4$

b. $\log_3 405 - \log_3 5$

c. $5\log_b x + 6\log_b y$

d.
$$2 \ln x - \frac{1}{2} \ln y$$


e.
$$4 \ln x + 7 \ln y - 3 \ln z$$

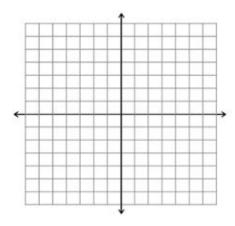
f.
$$\frac{1}{3}(\log_4 x - \log_4 y)$$

More Graphing!

10. Without a calculator, sketch the following logarithmic functions. State the range and domain of each function, intercepts (where possible without a calculator), and one additional point on the graph.

a.
$$f(x) = \log_5(x+6)$$

Domain: _____

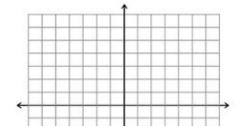

Range: _____

Intercept: _____

Asymptote: _____

Point(s): _____

b.
$$f(x) = 2 + \log_5 x$$

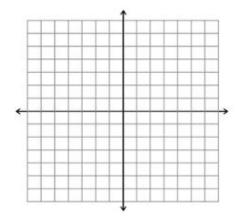

Range: _____

Intercept: _____

Asymptote:

Point(s): _____

c.
$$f(x) = -\ln x + 2$$



Domain: _____

Range: _____

Intercept: _____

d.
$$f(x) = (\ln x - 7)^2$$

Domain:

Range: _____

Intercept: _____

Asymptote: _____

Point(s):_____