Change of Base Theorem

For any positive real numbers x, a and b, where $a \neq 1$ and $b \neq 1$, the following holds.

$$
\log _{a} x=
$$

1. Use the change-of-base theorem to find an approximation to four decimal places for each of the following:
a. $\log _{4} 20=$
b. $\log _{2} 0.7=$
2. Solve:
a. $\quad 8^{x}=21$
b. $5^{2 x+3}=8^{x+1}$
c. $e^{|x|}=50$
d. $e^{4 x} \cdot e^{x-1}=5 e$
e. $e^{2 x}-6 e^{x}+5=0$

Recall that the domain of $y=\log _{a} x$ is \qquad . For this reason, it is always necessary to check that proposed solutions of a logarithmic equation result in logarithms of numbers in the original equation.
3. Solve the following and check for extraneous solutions.
a. $4 \ln x=36$
b. $\quad \log _{3}\left(x^{3}-5\right)=1$
c. $\log (2 x+1)+\log x=\log (x+8)$
d. $\log _{3}(4 x+1)(x+1)=3$
e. $\log _{2}(2 x-5)+\log _{2}(x-3)=3$
f. $\quad \ln e^{\ln x}-\ln (x-4)=\ln 5$

