Honors Algebra 2 with Trig 4.4 Evaluating Logarithms and Change of Base 4.5 Solving Exponential and Logarithmic Equations

Change of Base Theorem For any positive real numbers *x*, *a* and *b*, where $a \neq 1$ and $b \neq 1$, the following holds.

 $\log_a x =$ _____

- 1. Use the change-of-base theorem to find an approximation to four decimal places for each of the following:
 - a. $\log_4 20 =$ b. $\log_2 0.7 =$
- 2. Solve:

a. $8^x = 21$ b. $5^{2x+3} = 8^{x+1}$ c. $e^{|x|} = 50$

d. $e^{4x} \cdot e^{x-1} = 5e$ e. $e^{2x} - 6e^x + 5 = 0$

Recall that the domain of $y = \log_a x$ is _____. For this reason, it is always necessary to check that proposed solutions of a logarithmic equation result in logarithms of ______numbers in the original equation.

Honors Algebra 2 with Trig 4.4 Evaluating Logarithms and Change of Base 4.5 Solving Exponential and Logarithmic Equations 3. Solve the following and check for extraneous solutions.

a. $4 \ln x = 36$ b. $\log_3(x^3 - 5) = 1$

c. $\log(2x+1) + \log x = \log(x+8)$

d. $\log_3(4x+1)(x+1) = 3$

e. $\log_2(2x-5) + \log_2(x-3) = 3$ f. $\ln e^{\ln x} - \ln(x-4) = \ln 5$