Geometry CP 4.6 Isosceles and Equilateral Triangles

Isosceles Triangle Theorem	If two sides of a triangle are congruent, then the angles opposite those sides are congruent.	A 1 2 B
Converse of Isosceles Triangle Theorem	If two angles of a triangle are congruent, then the sides opposite to those angles are congruent.	D 1 2 F

- 1. Use the diagram below to answer the following questions:
 - a. Name two unmarked congruent angles.

b. Name two unmarked congruent sides.

- 2. Use the diagram below to answer the following questions:
 - a. Name two unmarked congruent angles.

b. Name two unmarked congruent sides.

3. Solve for x and y

a.

b.

d.

4. Solve for *x*

Equilateral Triangle Corollaries			
	A triangle is equilateral if and only if it is equiangular.	A B C	
	Each angle of an equilateral triangle is 60°	$F \xrightarrow{60^{\circ}} 60^{\circ} E$	

5. Find the unknown measures:

6. Solve for *x* and *y* :

Geometry CP 4.6 Isosceles and Equilateral Triangles

