IF

$$
\begin{aligned}
& f^{\prime}(x)>0 \\
& f^{\prime}(x)<0 \\
& f^{\prime}(x) \text { is increasing } \\
& f^{\prime}(x) \text { is decreasing } \\
& f^{\prime}(x) \text { has a max or min } \\
& f^{\prime}(x)=0 \text { or D.N.E. } \\
& f^{\prime}(x) \text { changes from }+ \text { to - } \\
& f^{\prime}(x) \text { changes from }- \text { to }+ \\
& f^{\prime \prime}(x)>0 \\
& f^{\prime \prime}(x)<0 \\
& f^{\prime \prime}(x)=0 \text { and changes signs }
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=0 \text { AND } f^{\prime \prime}<0 \\
& f^{\prime}(x)=0 \quad \text { AND } f^{\prime \prime}>0
\end{aligned}
$$

$f(x)$ is increasing
$f(x)$ is decreasing
$f(x)$ is concave up
$f(x)$ is concave down
$f(x)$ has a POI
$f(x)$ has a critical point
$f(x)$ has a max
$f(x)$ has a min
$f(x)$ is concave up $f(x)$ is concave down $f(x)$ has a POI
$f(x)$ has a max $f(x)$ has a min

Therefore

$$
\begin{array}{ll}
f^{\prime}(x)>0 \text { AND } f^{\prime \prime}>0 & f(x) \text { is increasing \& concave up } \\
f^{\prime}(x)>0 \text { AND } f^{\prime \prime}<0 & f(x) \text { is increasing \& concave down } \\
f^{\prime}(x)<0 \text { AND } f^{\prime \prime}>0 & f(x) \text { is decreasing \& concave up } \\
f^{\prime}(x)<0 \text { AND } f^{\prime \prime}<0 & f(x) \text { is decreasing \& concave down }
\end{array}
$$

THEOREM 1 The Extreme Value Theorem

If f is continuous on a closed interval $[a, b]$, then f has both a maximum value and a minimum value on the interval.

Critical Point: a point in the interior of the domain of a function f at which $f^{\prime}=0$ or f^{\prime} does not exist is a critical point of f

Stationary Point: a point in the interior of the domain of a function f at which $f^{\prime}=0$ is called a stationary point of f

Critical points don't immediately imply local extrema!

At a left endpoint a :
If $f^{\prime}<0\left(f^{\prime}>0\right)$ for $x>a$, then f has a local maximum (minimum) value at a.

At a right endpoint \boldsymbol{b} :
If $f^{\prime}<0\left(f^{\prime}>0\right)$ for $x<b$, then f has a local minimum (maximum) value at b.

5.1 Extreme Value of Functions

5.2 Mean Value Theorem

5.3 Connecting f^{\prime} and $f^{\prime \prime}$ with the Graph of f

BC Calculus
2001 BC 4 No Calc
4. Let h be a function defined for all $x \neq 0$ such that $h(4)=-3$ and the derivative of h is given by $h^{\prime}(x)=\frac{x^{2}-2}{x}$ for all $x \neq 0$.
(a) Find all values of x for which the graph of h has a horizontal tangent, and determine whether h has a local maximum, a local minimum, or neither at each of these values. Justify your answers.
(b) On what intervals, if any, is the graph of h concave up? Justify your answer.
(c) Write an equation for the line tangent to the graph of h at $x=4$.
(d) Does the line tangent to the graph of h at $x=4$ lie above or below the graph of h for $x>4$? Why?

1996: AB-1

Note: This is the graph of the derivative of f, not the graph of f.

1. The figure above shows the graph of f^{\prime}, the derivative of a function f The domain of f is the set of all real numbers x such that $-3<x<5$.
(a) For what values of x does f have a relative maximum? Why?
(b) For what values of x does f have a relative minimum? Why?
(c) On what intervals is the graph of f concave upward? Use f^{\prime} to justify your answer.
(d) Suppose that $f(1)=0$. In the $x y$-plane provided, draw a sketch that shows the general shape the graph of the function f on the open interval $0<x<2$.
Note: The axes for this graph are provided in the pink booklet only.

THEOREM 3 Mean Value Theorem for Derivatives

If $y=f(x)$ is continuous at every point of the closed interval $[a, b]$ and differentiable at every point of its interior (a, b), then there is at least one point c in (a, b) at which

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$

Conditions of Theorem cannot be relaxed!

1. Find the value of c that satisfies the Mean Value Theorem on the interval $[-2,1]$ for the function $f(x)=-\frac{x^{2}}{2}+x-\frac{1}{2}$.
2. Find the value of c that satisfies the Mean Value Theorem for $f(x)=\frac{x-1}{x}$ on $[1,3]$
3. A trucker handed in a ticket at a toll booth showing that in 2 hours she had covered 159 miles on a toll road with speed limit 65 mph . The trucker was cited for speeding. Why?
4. Determine if the Mean Value Theorem can be applied. If it can then find all values of c that satisfy the theorem. If it cannot, explain why not.

$$
f(x)=\frac{-x^{2}}{4 x+8},[-3,-1]
$$

