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IF THEN
f2(x)>0 f(x) is increasing
£ (x)<0 f(x) is decreasing
f*(x) 1is increasing f(x) is concave up
£’ (x) is decreasing f(x) is concave down
£2(x) has a max or min f(x) has a POI
£'(x)=0 or D.N.E. f(x) has a critical point
£2(x) changes from + to - f(x) has a max
f? (x) changes from - to + f(x) has a min
f7(x) >0 f(x) is concave up
f7(x) <0 f(x) is concave down
£”(x) =0 and changes signs f(x) has a POI
f2(x)=0 AND <0 f(x) has a max
f2(x)=0 AND f”> 0 f(x) has a min

Therefore
£(x)>0 AND >0 f(x) is increasing & concave up
f2(x)>0 AND <0 f(x) is increasing & concave down
7 (x)<0 AND >0 f(x) is decreasing & concave up

£ (x)<0 AND <0 f(x) is decreasing & concave down
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THEOREM 1 The Extreme Value Theorem

If f is continuous on a closed interval [a, b}, then f has both a maximum valueanda |

minimum value on the interval. I
|

Critical Point: a point in the interior of the domain of a function f atwhich f'=0 or f' does
not exist is a critical point of f

Stationary Point: a point in the interior of the domain of a function f at which f' =0 is
called a stationary point of f

Critical points don’t immediately imply local extrema!
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If f'<0(f" > 0) for x > a, then f has a local maximum (minimum) value at a.
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At a right endpoint b:
If f'<0(f" >0) for x < b, then f has a local minimum (maximum) value at b.
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4. Let h be a function defined for all x # O such that #{4) = —3 and the derivative of # is given by

2
w(x) = = =2 forall x # 0.
X

(a) Find all values of x for which the graph of 4 has a horizontal tangent, and determine whether h has a local
maximum, a local minimumn, or neither at each of these values. Justify your answers.

(b) On what intervals, if any, is the graph of / concave up? Justify your answer.
(c) Write an equation for the line tangent to the graphof 4 at x = 4.
(d) Does the line tangent to the graph of h at x = 4 lie above or below the graph of A for x > 4 ? Why?
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1. The figure above shows the graph of f°, the derivative of & function /' The domain of f is the set
of all real numbers x such that =3 < x < §.

(a) For what values of x does { have a relative maximum? Why?
{b) For what values of x does f have a relative minimum? Why?
{c) On what intervals is the graph of f concave upward? Use f' to justify your answer.

(d) Supposc that f(1) = 0. In the xy-plane provided, draw a skeich that shows the general shape
: the graph of the function f on the open interval 0 < x < 2.

Note: The axes for this graph are provided in the pink bookler only.
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THEOREM 3 Mean Value Theorem for Derivatives R corhnuxaus
If y = f(x) is continuous at every point of the closed interval [, b] and differen- | 4 chosed

tiable at every point of its interior (g, b), then there is at least one point ¢ in (g, b) at

which : A\FE P “
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Conditions of Theorem cannot be relaxed!
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1. Find the value of ¢ that satisfies the Mean Value Theorem on the interval [- 2, 1] for
the function f(x) =— 325 +x-1.
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2. Find the value of cthat satisfies the Mean Value Theorem for f(x) = £1 on [1, 3]
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3. Atrucker handed in a ticket at a toll booth showing that in 2 hours she had covered
159 miles on a toll road with speed limit 65 mph. The trucker was cited for speeding.

Why?

£'(e) = I—'a::- = 4.8 m/h
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4. Determine if the Mean Value Theorem can be applied. If it can then find all values of
c that satisfy the theorem. If it cannot, explain why not.
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