Perpendicular Bisector of a Triangle:

Concurrent Lines:

Point of Concurrency:

The 3 perpendicular bisectors are concurrent The point of concurrency can be:

1. Inside the triangle

2. On the triangle

3. Outside the triangle

Circumcenter:

Circumscribe:

Perpendicular Bisector Theorem	If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.	AYB
Converse of the Perpendicular Bisector Theorem	If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment	A Y B

1. Find each measure:

a.
$$MN =$$

b.
$$BC =$$

c.
$$TU =$$

Angle Bisector of a Triangle:

Incenter:

Inscribe:

Angle Bisector Theorem	If a point is on the bisector of an angle, then it is equidistant from the sides of then angle	A C
Converse of the Angle Bisector Theorem	If a point in the interior of an angle is equidistant from the sides of the angle, then it is on the bisector of the angle.	A C B

2. Find each measure:

a.
$$BC =$$

b. If
$$m/_EFG = 50^{\circ}$$

then $m/_EFH =$

c.
$$m / MKL =$$

