### **THEOREM 3** Mean Value Theorem for Derivatives

If y = f(x) is continuous at every point of the closed interval [a, b] and differentiable at every point of its interior (a, b), then there is at least one point c in (a, b) at which

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$



Only says there is such a value, not where it is

Conditions of Theorem cannot be relaxed!

$$f(x) = |x|$$

$$y = |x|, -1 \le x \le 1$$
 $A(-1, 1)$ 
 $B(1, 1)$ 
 $a = -1$ 
 $b = 1$ 

Not differentiable everywhere in (a, b)

$$f(x) = \operatorname{int} x$$



Not continuous on closed interval [a, b]

1. Show that the function  $f(x) = x^2$  satisfies the hypotheses of the Mean Value Theorem on the interval on the given interval. Then find each value of c in the interval (a, b) that satisfies the equation

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

a. 
$$f(x) = x^{\frac{2}{3}}$$
 on  $[0,1]$ 

yes continuous on  $[0,1]$ 

alternation of  $[0,1]$ 

alternation of

c. 
$$f(x) = \ln(x-1)$$
 on [2,4]  
yes continuous on [2,4]  
differentiable on (2,4)  

$$f'(c) = \frac{f(4) - f(2)}{4 - 2} \qquad f'(x) = \frac{1}{x-1}$$

$$= \frac{\ln(3) - \ln(1)}{2}$$

$$= \frac{\ln 3}{2} = \frac{1}{c-1}$$
d. 
$$f(x) = \begin{cases} \sin^{-1} x, & -1 \le x < 1 \\ \frac{x}{2} + 1, & 1 \le x \le 3 \end{cases}$$

continuous?

$$\lim_{x \to 1^{-}} f = \sin^{-1}(1) = \frac{\pi}{2}$$

$$\lim_{x \to 1^+} f = \frac{1}{2} + 1 = \frac{3}{2}$$

discontinuous at x=1

so MUT doesn't apply

2. Explain why each of the following functions fails to satisfy the conditions of the Mean Value Theorem on the interval [-1,1].

a. 
$$f(x) = \sqrt{x} + 1$$
  
discontinuous from (-1,0)
$$f(x) = \begin{cases} x^3 + 3, & x < 1 \\ x^2 + 1, & x \ge 1 \end{cases}$$

$$\lim_{X \to 1^-} f = 4 \quad \lim_{X \to 1^+} f = 2$$

$$\text{discontinuous}$$

$$\text{at } x = 1$$

3. The interval  $a \le x \le b$  is given. Let A = (a, f(a)) and B = (b, f(b)). Write an equation for the secant line AB and a tangent line to f in the interval (a, b) that is parallel to AB.

$$f(x) = \sqrt{x-1} \qquad 1 \le x \le 3$$

$$m_{secant} = \frac{f(3) - f(1)}{3 - 1}$$

$$= \frac{\sqrt{2} - 0}{2}$$

$$m_{secant} = \frac{\sqrt{2} - 0}{2}$$

$$= \frac{\sqrt{2} - 0}{2}$$

$$m = \frac{\sqrt{2}}{2} \qquad (1, 0)$$

$$m = \frac{\sqrt{2}}{2$$

3. It took 20 sec for the temperature to rise from  $0^{\circ}F$  to  $212^{\circ}F$  when a thermometer was taken out of a freezer and placed in boiling water. Explain why at some point in the interval the mercury was rising at exactly  $10.6^{\circ}F$ .

$$f'(c) = \frac{f(20) - f(0)}{20}$$

$$= \frac{212 - 0}{20}$$

$$= 10.6$$
By MVT from time  $[0, 20]$  there exists some  $[0, 20]$  the mercury is

4. A marathoner ran the New York City Marathon in 2.2h. Show that at least twice, the marathoner was running at exactly 11mph.

$$f'(c) = \frac{26.2}{2.2} = 11.909$$

increasing by 10.6° F

the marathoners average velocity for the race was 11.909 mi/hr by the MVT there must exist a time  $t \in [0, 2.2]$  where he passed 11 mph to get to the average velocity of 11.909 mph and a time  $t \in [0, 2.2]$  where he passed 11 mph to finish the race and come to a complete stop.

# **DEFINITIONS** Increasing Function, Decreasing Function

Let f be a function defined on an interval I and let  $x_1$  and  $x_2$  be any two points in I.

- 1. fincreases on I if  $x_1 < x_2 \implies f(x_1) < f(x_2)$ .
- 2. f decreases on I if  $x_1 < x_2 \implies f(x_1) > f(x_2)$ .

# **COROLLARY 1 Increasing and Decreasing Functions**

Let f be continuous on [a, b] and differentiable on (a, b).

- 1. If f' > 0 at each point of (a, b), then f increases on [a, b].
- 2. If f' < 0 at each point of (a, b), then f decreases on [a, b].
- 5. Use analytic methods to determine (a) the local extrema, (b) the intervals on which the function is increasing, and (c) the intervals on which the function is decreasing.

a. 
$$g(x) = x^2 - x - 12$$

a) 
$$g'(x) = 2x - 1$$

b) 
$$g'(x) = 2x - 1$$

a) 
$$g'(x) = 2x - 1$$
 b)  $g'(x) = 2x - 1$  increasing from  $(\frac{1}{2}, \infty)$  b/c  $f'(x) > 0$ 

$$0 = 2x - 1$$

$$f' = \frac{1}{2}$$

b/c  $f'(x)>0$ 

from  $(-\infty, \frac{1}{2})$ 

b/c  $f'<0$ 

b. 
$$k(x) = \frac{1}{x^2}$$

b. 
$$k(x) = \frac{1}{x^2}$$
  $k'(x) = -2 x^{-3}$ 

a) 
$$0 = -2 \times^{-3}$$

$$0 = \frac{-2}{x^3} \text{ no } x \text{ value}$$
so no local extrema

n'(x) undefined at

c. 
$$f(x) = e^{-0.5x}$$

c. 
$$f(x) = e^{-0.5x}$$
  $f'(x) = -0.5e^{-0.5x}$ 

a) 
$$0 = -0.5e^{-0.5x}$$

no local extrema

never undefined

inc (-2, ∞) b/c f'>0

dec (-0, -2) b/c f'<0

d. 
$$g(x) = x^{\frac{1}{3}}(x+8)$$
  
 $0 = \frac{4x+8}{3x^{\frac{2}{3}}}$ 

e. 
$$k(x) = \frac{x}{x^2-4}$$
  
 $(x^2-4)(1) - x(2x)$   
 $(x^2-4)^2$ 

$$= \frac{x^2 - 4 - 2x^2}{(x^2 - 4)^2}$$

$$= \frac{-x^2-4}{(x^2-4)^2}$$

$$f. \ g(x) = 2x + \cos x$$

no extrema

$$g'(x) = \frac{1}{3} x^{-\frac{2}{3}} (x+8) + x^{\frac{1}{3}}$$

$$= \frac{x+8}{3 x^{\frac{2}{3}}} + x^{\frac{1}{3}}$$

$$f' = \frac{+}{-2} + +$$

$$= \frac{x+8 + 3x^{2/3}x^{1/3}}{3x^{2/3}}$$

$$= \frac{\times + 8 + 3 \times}{3 \times^{3/3}}$$

$$= \frac{4 \times + 8}{3 \times^{2/3}}$$

$$0 = \frac{-x^2 - 4}{(x^2 - 4)^2}$$

no extrema





# sinx bounded between -1 and 1

g increasing (-00,00) b/c g'(x)>0

## COROLLARY 2 Functions with f' = 0 are Constant

If f'(x) = 0 at each point of an interval *I*, then there is a constant *C* for which f(x) = C for all x in *I*.

Moon't sorget

# COROLLARY 3 Functions with the Same Derivative Differ by a Constant

If f'(x) = g'(x) at each point of an interval *I*, then there is a constant *C* such that f(x) = g(x) + C for all *x* in *I*.

### **DEFINITION Antiderivative**

A function F(x) is an **antiderivative** of a function f(x) if F'(x) = f(x) for all x in the domain of f. The process of finding an antiderivative is **antidifferentiation**.

6. Find all possible functions *f* with the given derivative:

a. 
$$f'(x) = \sin x$$

$$f(x) = -\cos x + C$$

b. 
$$f'(x) = \frac{1}{x-1}, x > 1$$

$$t(x) = |u|x-1| + C$$

7. Find the function with the given derivative whose graph passes through the point P.

a. 
$$f'(x) = \frac{1}{4x^{\frac{3}{4}}}$$
  $P(1,-2)$ 

$$t(x) = x_{1/4} + C$$

$$f(1) = -2 = 1^{V4} + C$$

$$f(x) = x^{1/4} - 3$$

b. 
$$f'(x) = 2x + 1 - \cos x P(0, 3)$$

$$f(x) = x^2 + x - \sin x + C$$

$$f(x) = x^2 + x - \sin x + 3$$