Calculus
5.2 Mean Value Theorem

THEOREM 3 Mean Value Theorem for Derivatives

If y = f(x) is continuous at every point of the closed interval [a, b] and differen-
tiable at every point of its interior (a, b), then there is at least one point ¢ in (a, b) at
which
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1. Show that the function f(x) = x? satisfies the hypotheses of the Mean Value

Theorem on the interval on the given interval. Then find each value of ¢ in the
interval (q, b) that satisfies the equation
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2. Explain why each of the following functions fails to satisfy the conditions of the Mean
Value Theorem on the interval [- 1, 1].

2 +3, z<1

22+1, z>1
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3. Theinterval a < x < bis given. Let A = (a,f(a)) and B = (b, f(b)). Write an equation for
the secant line AB and a tangentline to f in the interval (a,b) that is parallel to AB.
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3. It took 20 sec for the temperature to rise from 0°F to 212°F when a thermometer was

taken out of a freezer and placed in boiling water. Explain why at some point in the interval
the mercury was rising at exactly 10.6°F .
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4, A marathoner ran the New York City Marathon in 2.2h. Show that at least twice, the
marathoner was running at exactly 11mph.
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DEFINITIONS Increasing Function, Decreasing Function

Let f be a function defined on an interval 7 and let x; and x, be any two points in L
= flx) < flx,).

= flx) > flx,y).

1. fincreaseson/ if x;<x,
2. fdecreasesonl if x;<ux,

COROLLARY 1 Increasing and Decreasing Functions
Let f be continuous on {a, #] and differentiable on (g, b).
1. If f'> 0 ateach point of (a. b), then f increases on [g, b].

2. If f'< 0 ateach point of (a, b), then f decreases on [a, b].

5. Use analytic methods to determine (a) the local extrema, (b) the intervals on which the
function is increasing, and (c) the intervals on which the function is decreasing.

a g =x*-x-12

= ‘F\"Om (l/z OO)
G "X = - o) (X)) = 2x-\ ynereast ,
3 : ! % o/c £'(x)>0
0= 2x-\ -
.- + ) dec reas\ny Feo
L - X £ ‘ \3
b A (-0, %
s (v _‘-\q/) h blc £'<0O
min zZ, H , c
-4 () = - ‘
b. k(x)=% w'(X) 2% S e o, 5 vic 5o
C\\ - -3 ol - ; — |
oLy ; Q) dec (0O, ©0) vlc £¢<O
O = ;E; no X VU\!UC (o)
X 50 No \Om_;(-\-rema
W) ondehed  oX
X= 0
-0, 5X
¢ f)=e $'K)=-0.5 &

—o.5 X
ob C>=—C>.5eO

no local extrema

never undefned

p) never nc
bie £ F O

(-c0, ) bl £/ <0

S



AB Calculus
5.2 Mean Value Theorem
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COROLLARY 2 Functions with f’' = 0 are Constant |
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If f'(x) =10 at each point of an interval /, then there is a constant C for which |

‘ F(x)=C forallxin /.

X
o X° ¥ COROLLARY 3 Functions with the Same Derivative Differ
X N
#Qo{‘ d> by a Constant
O‘DQ If f'(x) = g'(x) at each point of an interval /, then there is a constant C such that

X f(x)=g(x) + C forallxinl

$ ki

DEFINITION Antiderivative

A function F(x) is an antiderivative of a function f(x) if F'(x) =f(x) for all x in
the domain of £ The process of finding an antiderivative is antidifferentiation.

L

6. Find all possible functions f with the given derivative:

a. f(x)=sinx

fX)=—-cosx +C

b. f(xX)==, x>1

x-1°
£od=\n x| +C
= \n (X‘D +C

7. Find the function with the given derivative whose graph passes through the point P.
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_F\(I) = -2 = \!/q +C

b. fi(x)=2x+1-cosx P(0,3)
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3= C

£ = X* % -snx + 3






